Skip to main content

Building Mathematical Models for Vascular Growth and Inhibition

  • Protocol
  • First Online:
Vasculogenic Mimicry

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2514))

  • 457 Accesses

Abstract

Microvascular channel growth and inhibition, such as what occurs in vasculogenic mimicry, are generally represented in tables or shown in bar graphs. Although informative, those representations lack accurate predictions on dosage or the opportunity to report an unbiased metric when one wants to compare different signal dependence, for instance, the concentration of different drugs or enzymes or expression levels of particular genes.

Mathematical model building is an exercise that makes you think of which are the key variables of a particular phenomenon and how they affect the targeting experimental output.

Starting from early blood vessel formation and regression (number of vessels) due to an inducer/inhibitor effect, we show how a conceptual mathematical model may be built. As an example, the model was used to parameterize aloin bioactivity on a chick yolk sac membrane (YSM) assay with respect to its vasculogenic and vessel regression properties. A separable functional form where vessel formation and cell death occur as mutually exclusive concentration or signal-dependent functions showed that there was a good correlation with experimental data. Although an analytical solution for that simple case is presented, parameter determination and parametric analysis may be carried out numerically by solving the system of ordinary differential equations that represents the model using nonlinear regression for parameter determinations. Such model formulation thus allows for a more objective evaluation concentration dependence and is suggested as a novel method to evaluate blood vessel formation and inhibition as well as a general model for quantitative balance between chemical stimulation and toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Plank MJ, Sleeman BD, Jones PF (2004) A mathematical model of tumour angiogenesis regulated by vascular endothelial growth factor and the angiopoietins. J Theor Biol 229:435–454. https://doi.org/10.1016/j.jtbi.2004.04.012

    Article  PubMed  CAS  Google Scholar 

  2. Ledzewicz U, Schattler H (2008) Optimal and suboptimal protocols for a class of mathematical models of tumor anti-angiogenesis. J Theor Biol 252:295–312. https://doi.org/10.1016/j.jtbi.2008.02.014

    Article  PubMed  Google Scholar 

  3. Rodrigues DS, Mancera PFA, Pinho STR (2016) Understanding the antiangiogenic effect of metronomic chemotherapy through a simple mathematical model. Phys A Stat Mech Its Appl 464:251–266. https://doi.org/10.1016/j.physa.2016.07.076

    Article  CAS  Google Scholar 

  4. Naghavi N, Hosseini FS, Sardarabadi M et al (2016) Simulation of tumor induced angiogenesis using an analytical adaptive modeling including dynamic sprouting and blood flow modeling. Microvasc Res 107:51–64. https://doi.org/10.1016/j.mvr.2016.05.002

    Article  PubMed  Google Scholar 

  5. Nowak-Sliwinska P, Segura T, Iruela-Arispe ML (2014) The chicken chorioallantoic membrane model in biology, medicine and bioengineering. Angiogenesis 17:779–804. https://doi.org/10.1007/s10456-014-9440-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86:353–364. https://doi.org/10.1016/s0092-8674(00)80108-7

    Article  PubMed  CAS  Google Scholar 

  7. Carmeliet P (2003) Angiogenesis in health and disease. Nat Med 9:653–660. https://doi.org/10.1038/nm0603-653

    Article  PubMed  CAS  Google Scholar 

  8. Deruiter MC, Poelmann RE, Vaniperen L et al (1993) Early formation of the vascular system in quail embryos. Anat Rec 235:261–274. https://doi.org/10.1002/ar.1092350210

    Article  PubMed  CAS  Google Scholar 

  9. Ishikawa M, Asahara T (2004) Endothelial progenitor cell culture for vascular regeneration. Stem Cells Dev 13:344–349. https://doi.org/10.1089/1547328041797435

    Article  PubMed  Google Scholar 

  10. Risau W, Sariola H, Zerwes H et al (1988) Vasculogenesis and angiogenesis in embryonic-stem-cell-derived embryoid bodies. Development 102:471–478

    Article  CAS  Google Scholar 

  11. Melino G (2001) The Sirens ’ song. Nature 412:23. https://doi.org/10.1038/35083653

    Article  PubMed  CAS  Google Scholar 

  12. Zhang M, Rehman J, Malik AB (2014) Endothelial progenitor cells and vascular repair. Curr Opin Hematol 21:224–228. https://doi.org/10.1097/MOH.0000000000000041

    Article  PubMed  PubMed Central  Google Scholar 

  13. Folkman J, Shing Y (1992) Angiogenesis. J Biol Chem 267:10931–10934

    Article  CAS  Google Scholar 

  14. Yancopoulos GD, Davis S, Gale NW et al (2000) Vascular-specific growth factors and blood vessel formation. Nature 407:242–248. https://doi.org/10.1038/35025215

    Article  PubMed  CAS  Google Scholar 

  15. Dias PF, Berti FV, Siqueira JM Jr (2008) Trans-resveratrol inhibits early blood vessel formation (vasculogenesis) without impairment of embryonic growth. J Pharmacol Sci 107:118–127. https://doi.org/10.1254/jphs.FP0071876

    Article  PubMed  CAS  Google Scholar 

  16. Dias PF, Siqueira JM Jr, Maraschin M et al (2008) A polysaccharide isolated from the brown seaweed Sargassum stenophyllum exerts antivasculogenic effects evidenced by modified morphogenesis. Microvasc Res 75:34–44. https://doi.org/10.1016/j.mvr.2007.05.004

    Article  PubMed  CAS  Google Scholar 

  17. Meneghelli C, Joaquim LSD, Félix GLQ et al (2013) Southern Brazilian autumnal propolis shows anti-angiogenic activity: an in vitro and in vivo study. Microvasc Res 88:1–11. https://doi.org/10.1016/j.mvr.2013.03.003

    Article  PubMed  CAS  Google Scholar 

  18. Ribatti D, Vacca A, Roncali L et al (1996) The chick embryo chorioallantoic membrane as a model for in vivo research on angiogenesis. Int J Dev Biol 40:1065–1218

    Google Scholar 

  19. Nguyen M, Shing Y, Folkman J (1994) Quantitation of angiogenesis and antiangiogenesis in the chick embryo chorioallantoic membrane. Microvasc Res 47:31–40

    Article  CAS  Google Scholar 

  20. Chapman SC, Collignon J, Schoenwolf GC et al (2001) Improved method for chick whole-embryo culture using a filter paper carrier. Dyn Dev 220:284–289

    Article  CAS  Google Scholar 

  21. Hamburger V, Hamilton HL (1951) A series of normal stage in the development of chick embryo. Rep J Morphol Dev Dyn 88:49–92

    Article  CAS  Google Scholar 

  22. Gagliardi A, Collins DC (1993) Inhibition of angiogenesis by antiestrogens. Cancer Res 53:533–535

    PubMed  CAS  Google Scholar 

  23. Constantinides A, Mostoufi N (1999) Numerical methods for chemical engineers with MATLAB applications. Prentice Hall PTR, Upper Saddle River

    Google Scholar 

  24. Beers KJ (2007) Numerical methods for chemical engineering. Cambridge University Press, Cambridge

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luismar Marques Porto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Berti, F.V., Porto, L.M. (2022). Building Mathematical Models for Vascular Growth and Inhibition. In: Marques dos Reis, E., Berti, F. (eds) Vasculogenic Mimicry. Methods in Molecular Biology, vol 2514. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2403-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2403-6_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2402-9

  • Online ISBN: 978-1-0716-2403-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics