Skip to main content

Large-Scale Analysis of RNA–Protein Interactions for Functional RNA Motif Discovery Using FOREST

  • Protocol
  • First Online:
piRNA

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2509))

Abstract

RNA transcripts can form a variety of higher-order structures. We developed a large-scale affinity analysis system, FOREST (Folded RNA Element Profiling with Structure Library), to investigate the function of these RNA structures on transcriptome-wide scale. Here we describe a protocol to analyze RNA–protein interactions using FOREST . Users of the protocol prepare an RNA structure library comprised of diverse species of transcripts and perform high-throughput characterization of the RNA–protein interactions to obtain quantitative and comprehensive information on the binding affinities and specificities. Moreover, we demonstrate how FOREST can be used to analyze a non-canonical structure, the RNA G-quadruplex, without sequencing bias, because the quantification is performed directly on a microarray without sequence amplification. FOREST will contribute to the discovery of RNA structure motifs that determine RNA–protein interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yao Z, Weinberg Z, Ruzzo WL (2006) CMfinder—a covariance model based RNA motif finding algorithm. Bioinformatics 22:445–452

    Article  CAS  PubMed  Google Scholar 

  2. Nawrocki EP, Eddy SR (2013) Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 29:2933–2935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Siegfried N, Busan S, Rice G et al (2014) RNA motif discovery by SHAPE and mutational profiling (SHAPE-MaP). Nat Methods 11:959–965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lu Z et al (2016) RNA duplex map in living cells reveals higher-order transcriptome structure. Cell 165:1267–1279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mustoe AM et al (2018) Pervasive regulatory functions of mRNA structure revealed by high-resolution SHAPE probing. Cell 173:181–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang Z, Xing Y (2017) CLIP-seq analysis of multi-mapped reads discovers novel functional RNA regulatory sites in the human transcriptome. Nucleic Acids Res 45:9260–9271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hafner M, Katsantoni M, Köster T et al (2021) CLIP and complementary methods. Nat Rev Methods Primers 1:20

    Article  CAS  Google Scholar 

  8. Dominguez D et al (2018) Sequence, structure, and context preferences of human RNA binding proteins. Mol Cell 70:854–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Komatsu KR, Taya T, Matsumoto S et al (2020) RNA structure-wide discovery of functional interactions with multiplexed RNA motif library. Nat Commun 11:6275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ray D et al (2009) Rapid and systematic analysis of the RNA recognition specificities of RNA-binding proteins. Nat Biotechnol 27:667–670

    Article  CAS  PubMed  Google Scholar 

  11. Triboulet R, Pirouz M, Gregory RI (2015) A single Let-7 microRNA bypasses LIN28-mediated repression. Cell Rep 13:260–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ustianenko D et al (2018) LIN28 selectively modulates a subclass of Let-7 microRNAs. Mol Cell 71:271–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Huang Z-L et al (2018) Identification of G-quadruplex-binding protein from the exploration of RGG motif/G-quadruplex interactions. J Am Chem Soc 140:17945–17955

    Article  CAS  PubMed  Google Scholar 

  14. Tippana R, Chen MC, Demeshkina NA, Ferré-D’Amaré AR, Myong S (2019) RNA G-quadruplex is resolved by repetitive and ATP-dependent mechanism of DHX36. Nat Commun 10:1855

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank P. Karagiannis for critical reading of the paper. This work was supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI No. 20H05626, 15H05722, to H.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirohide Saito .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Miyashita, E., Komatsu, K.R., Saito, H. (2022). Large-Scale Analysis of RNA–Protein Interactions for Functional RNA Motif Discovery Using FOREST. In: Parrish, N.F., Iwasaki, Y.W. (eds) piRNA. Methods in Molecular Biology, vol 2509. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2380-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2380-0_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2379-4

  • Online ISBN: 978-1-0716-2380-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics