Skip to main content

From Methylome to Integrative Analysis of Tissue Specificity

  • Protocol
  • First Online:
Catharanthus roseus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2505))

Abstract

DNA methylation is the most studied epigenetic mark in both plants and animals. The gold standard for assaying genome-wide DNA methylation at single-base resolution is whole-genome bisulfite sequencing (WGBS). Here, we describe an improved procedure for WGBS and original bioinformatic workflows applied to unravel tissue-specific variations of the methylome in relation to gene expression and accumulation of secondary metabolites in the medicinal plant Catharanthus roseus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Urich MA, Nery JR, Lister R, Schmitz RJ, Ecker JR (2015) MethylC-seq library preparation for base-resolution whole-genome bisulfite sequencing. Nat Protoc 10:475–483

    Article  CAS  Google Scholar 

  2. Adusumalli S, Mohd Omar MF, Soong R, Benoukraf T (2015) Methodological aspects of whole-genome bisulfite sequencing analysis. Brief Bioinform 16:369–379

    Article  CAS  Google Scholar 

  3. Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, Nery JR, Lee L, Ye Z, Ngo QM, Edsall L, Antosiewicz-Bourget J, Stewart R, Ruotti V, Millar AH, Thomson JA, Ren B, Ecker JR (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462:315–322

    Article  CAS  Google Scholar 

  4. Lister R, O’Malley RC, Tonti-Filippini J, Gregory BD, Berry CC, Millar AH, Ecker JR (2008) Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133:523–536

    Article  CAS  Google Scholar 

  5. Lister R, Pelizzola M, Kida YS, Hawkins RD, Nery JR, Hon G, Antosiewicz-Bourget J, O’Malley R, Castanon R, Klugman S, Downes M, Yu R, Stewart R, Ren B, Thomson JA, Evans RM, Ecker JR (2011) Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 471:68–73

    Article  CAS  Google Scholar 

  6. Li Y, Zhu J, Tian G, Li N, Li Q, Ye M, Zheng H, Yu J, Wu H, Sun J, Zhang H, Chen Q, Luo R, Chen M, He Y, Jin X, Zhang Q, Yu C, Zhou G, Huang Y, Cao H, Zhou X, Guo S, Hu X, Li X, Kristiansen K, Bolund L, Xu J, Wang W, Yang H, Wang J, Li R, Beck S, Zhang X (2010) The DNA methylome of human peripheral blood mononuclear cells. PLoS Biol 8:e1000533

    Article  Google Scholar 

  7. Chalhoub B, Denoeud F, Liu S, Parkin IA, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B, Correa M, Da Silva C, Just J, Falentin C, Koh CS, Le Clainche I, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao M, Edger PP, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Le Paslier MC, Fan G, Renault V, Bayer PE, Golicz AA, Manoli S, Lee TH, Thi VH, Chalabi S, Hu Q, Fan C, Tollenaere R, Lu Y, Battail C, Shen J, Sidebottom CH, Wang X, Canaguier A, Chauveau A, Berard A, Deniot G, Guan M, Liu Z, Sun F, Lim YP, Lyons E, Town CD, Bancroft I, Wang X, Meng J, Ma J, Pires JC, King GJ, Brunel D, Delourme R, Renard M, Aury JM, Adams KL, Batley J, Snowdon RJ, Tost J, Edwards D, Zhou Y, Hua W, Sharpe AG, Paterson AH, Guan C, Wincker P (2014) Plant genetics. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345:950–953

    Article  CAS  Google Scholar 

  8. Lyko F, Foret S, Kucharski R, Wolf S, Falckenhayn C, Maleszka R (2010) The honey bee epigenomes: differential methylation of brain DNA in queens and workers. PLoS Biol 8:e1000506

    Article  Google Scholar 

  9. Guo JU, Su Y, Shin JH, Shin J, Li H, Xie B, Zhong C, Hu S, Le T, Fan G, Zhu H, Chang Q, Gao Y, Ming GL, Song H (2014) Distribution, recognition and regulation of non-CpG methylation in the adult mammalian brain. Nat Neurosci 17:215–222

    Article  CAS  Google Scholar 

  10. Sow MD, Allona I, Ambroise C, Conde D, Fichot R, Gribkova S, Jorge V, Le-Provost G, Pâques L, Plomion C, Salse J, Sanchez-Rodriguez L, Segura V, Tost J, Maury S (2018) Epigenetics in forest trees. In: Advances in botanical research, vol 88. Elsevier, Amsterdam, pp 387–453

    Google Scholar 

  11. Daviaud C, Renault V, Mauger F, Deleuze JF, Tost J (2018) Whole-genome bisulfite sequencing using the ovation(R) ultralow methyl-seq protocol. Methods Mol Biol 1708:83–104

    Article  CAS  Google Scholar 

  12. Kernaleguen M, Daviaud C, Shen Y, Bonnet E, Renault V, Deleuze JF, Mauger F, Tost J (2018) Whole-genome bisulfite sequencing for the analysis of genome-wide DNA methylation and hydroxymethylation patterns at single-nucleotide resolution. Methods Mol Biol 1767:311–349

    Article  CAS  Google Scholar 

  13. Dugé de Bernonville T, Maury S, Delaunay A, Daviaud C, Chaparro C, Tost J, O’Connor SE, Courdavault V (2020) Developmental methylome of the medicinal plant catharanthus roseus unravels the tissue-specific control of the monoterpene indole alkaloid pathway by DNA methylation. Int J Mol Sci 21:6028

    Article  Google Scholar 

  14. Dugé de Bernonville T, Carqueijeiro I, Lanoue A, Lafontaine F, Sánchez Bel P, Liesecke F, Musset K, Oudin A, Glévarec G, Pichon O, Besseau S, Clastre M, St-Pierre B, Flors V, Maury S, Huguet E, O’Connor SE, Courdavault V (2017) Folivory elicits a strong defense reaction in Catharanthus roseus: metabolomic and transcriptomic analyses reveal distinct local and systemic responses. Sci Rep 7:40453

    Article  Google Scholar 

  15. Goecks J, Nekrutenko A, Taylor J, Galaxy T (2010) Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol 11(8):R86

    Article  Google Scholar 

  16. Xi Y, Li W (2009) BSMAP: whole genome bisulfite sequence MAPping program. BMC Bioinf 10:232

    Article  Google Scholar 

  17. Krueger F, Andrews SR (2011) Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics 27:1571–1572

    Article  CAS  Google Scholar 

  18. Akalin A, Kormaksson M, Li S, Garrett-Bakelman FE, Figueroa ME, Melnick A et al (2012) MethylKit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome Biol 13:R87

    Article  Google Scholar 

  19. Wu H, Xu T, Feng H, Chen L, Li B, Yao B, Qin Z, Jin P, Conneely KN (2015) Detection of differentially methylated regions from whole-genome bisulfite sequencing data without replicates. Nucleic Acids Res 43(21):e141

    PubMed  PubMed Central  Google Scholar 

  20. Grehl C, Wagner M, Lemnian I, Glaser B, Grosse I (2020) Performance of mapping approaches for whole-genome bisulfite sequencing data in crop plants. Front Plant Sci 11:176

    Article  Google Scholar 

Download references

Acknowledgments

The protocol for WGBS analysis has been set-up in the laboratory of J. Tost in the framework of the ANR-BMBF funded project “Epigenomics of Parkinson’s Disease” (EpiPD, ANR-13-EPIG-0003-05). The research on C. roseus was funded by the “Région Centre Val de Loire” (France, ABISAL, and CatharSIS grants) for the University of Tours (V. Courdavault). Part of the methylome analysis was also developed in the frame of the ANR funded project EPITREE (ANR-17-CE32-0009-01; https://www6.inrae.fr/epitree-project_eng/) at the University of Orléans (S. Maury) and the CEA (J.Tost) in collaboration with the Plateforme Epigénomique Environnementale, IHPE Perpignan (https://bioinfo.univ-perp.fr/) providing computational infrastructure and bioinformatics support (C. Chaparro).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Maury .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dugé de Bernonville, T., Daviaud, C., Chaparro, C., Tost, J., Maury, S. (2022). From Methylome to Integrative Analysis of Tissue Specificity. In: Courdavault, V., Besseau, S. (eds) Catharanthus roseus. Methods in Molecular Biology, vol 2505. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2349-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2349-7_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2348-0

  • Online ISBN: 978-1-0716-2349-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics