Skip to main content

Encapsulation of Pediatric Cardiac-Derived C-Kit+ Cells in Cardiac Extracellular Matrix Hydrogel for Echocardiography-Directed Intramyocardial Injection in Rodents

  • Protocol
  • First Online:
Cardiac Tissue Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2485))

Abstract

Pediatric cardiac-derived c-kit+ cell therapies represent an innovative approach for cardiac tissue repair that have demonstrated promising improvements in recent studies and offer multiple benefits, such as easy isolation and autologous transplant. However, concerns about failure of engraftment and transient paracrine effects have thus far limited their use. To overcome these issues, an appropriate cell delivery vehicle such as a cardiac extracellular matrix (cECM) hydrogel can be utilized. This naturally derived biomaterial can support embedded cells, allowing for local diffusion of paracrine factors, and provide a healthy microenvironment for optimal cellular function. This protocol focuses on combining cardiac-derived c-kit+ cells and a cECM hydrogel to prepare a minimally invasive, dual therapeutic for in vivo delivery. We also outline a detailed method for ultrasound-guided intramyocardial injection of cell-laden hydrogels in a rodent model. Additional steps for labeling cells with a fluorescent dye for in vivo cell tracking are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tallini YN, Greene KS, Craven M, Spealman A, Breitbach M, Smith J et al (2009) C-Kit expression identifies cardiovascular precursors in the neonatal heart. Proc Natl Acad Sci U S A 106(6):1808–1813. https://doi.org/10.1073/pnas.0808920106

    Article  PubMed  PubMed Central  Google Scholar 

  2. Agarwal U, Smith A, French KM, Boopathy AV, George A, Trac D et al (2016) Age-dependent effect of pediatric cardiac progenitor cells after juvenile heart failure. Stem Cells Transl Med 5(7):883–892. https://doi.org/10.5966/sctm.2015-0241

    Article  PubMed  PubMed Central  Google Scholar 

  3. Trac D, Maxwell JT, Brown ME, Xu C, Davis ME (2018) Aggregation of child cardiac progenitor cells into spheres activates notch signaling and improves treatment of right ventricular heart failure. Circ Res 124(4):526–538. https://doi.org/10.1161/CIRCRESAHA.118.313845

    Article  CAS  Google Scholar 

  4. Bejleri D, Streeter BW, Nachlas ALY, Brown ME, Gaetani R, Christman KL, Davis ME (2018) A bioprinted cardiac patch composed of cardiac-specific extracellular matrix and progenitor cells for heart repair. Adv Healthc Mater 1800672(7):1–13. https://doi.org/10.1002/adhm.201800672

    Article  CAS  Google Scholar 

  5. Ye L, Zimmermann WH, Garry DJ, Zhang J (2013) Patching the heart: Cardiac repair from within and outside. Circ Res 113(7):922–932. https://doi.org/10.1161/CIRCRESAHA.113.300216

    Article  CAS  PubMed  Google Scholar 

  6. Feyen DAM, Gaetani R, Doevendans PA, Sluijter JPG (2016) Stem cell-based therapy: improving myocardial cell delivery. Adv Drug Deliv Rev 106:104–115. https://doi.org/10.1016/j.addr.2016.04.023

    Article  CAS  PubMed  Google Scholar 

  7. Singelyn JM, Sundaramurthy P, Johnson TD, Schup-magoffin PJ, Hu DP, Faulk DM et al (2012) Catheter-deliverable hydrogel derived from decellularized ventricular extracellular matrix increases endogenous cardiomyocytes and preserves cardiac function post-myocardial infarction. J Am Coll Cardiol 59(8). https://doi.org/10.1016/j.jacc.2011.10.888

  8. Traverse JH, Henry TD, Dib N, Patel AN, Pepine C, Schaer GL et al (2019) First-in-man study of a cardiac extracellular matrix Hydrogel in early and late myocardial infarction patients. JACC: Basic Transl Sci 4(6):659–669. https://doi.org/10.1016/j.jacbts.2019.07.012

    Article  Google Scholar 

  9. Ungerleider JL, Johnson TD, Hernandez MJ, Elhag DI, Braden RL, Dzieciatkowska M et al (2016) Extracellular matrix hydrogel promotes tissue remodeling, arteriogenesis, and perfusion in a Rat Hindlimb Ischemia model. JACC: Basic Transl Sci 1(1–2). https://doi.org/10.1016/j.jacbts.2016.01.009

  10. Hernandez MJ, Gaetani R, Pieters VM, Ng NW, Chang AE, Martin TR et al (2018) Decellularized extracellular matrix hydrogels as a delivery platform for microRNA and extracellular vesicle therapeutics. Adv Ther 1800032(1):1–9. https://doi.org/10.1002/adtp.201800032

    Article  CAS  Google Scholar 

  11. Dequach JA, Mezzano V, Miglani A, Lange S, Keller GM, Christman KL (2010) Simple and high yielding method for preparing tissue specific extracellular matrix coatings for cell culture. PLoS One 5(9):1–11. https://doi.org/10.1371/journal.pone.0013039

    Article  CAS  Google Scholar 

  12. Singelyn JM, Dequach JA, Seif-naraghi SB, Littlefield RB, Schup-magoffin PJ, Christman KL (2010) Naturally derived myocardial matrix as an injectable scaffold for cardiac tissue engineering. Biomaterials 30(29):5409–5416. https://doi.org/10.1016/j.biomaterials.2009.06.045

    Article  CAS  Google Scholar 

  13. French KM, Boopathy AV, DeQuach JA, Chingozha L, Lu H, Christman KL, Davis ME (2013) A naturally-derived cardiac extracellular matrix enhances cardiac progenitor cell behavior in vitro. Acta Biomater 8(12):4357–4364. https://doi.org/10.1016/j.actbio.2012.07.033.A

    Article  Google Scholar 

  14. French KM, Davis ME (2014) Isolation and expansion of C-Kit-positive cardiac progenitor cells by magnetic cell sorting. In: Radisic M, Black LD III (eds) Cardiac tissue engineering: methods and protocols, vol 1181. Humana Press, New York, NY, pp 39–50. https://doi.org/10.1007/978-1-4939-1047-2

    Chapter  Google Scholar 

  15. Ungerleider JL, Johnson TD, Rao N, Christman KL (2015) Fabrication and characterization of injectable hydrogels derived from decellularized skeletal and cardiac muscle. Methods:15–17. https://doi.org/10.1016/j.ymeth.2015.03.024

Download references

Acknowledgments

This material is based upon work that is supported by a grant from the National Institutes of Health HL146147 to MED.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael E. Davis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Shakya, P., Brown, M.E., Davis, M.E. (2022). Encapsulation of Pediatric Cardiac-Derived C-Kit+ Cells in Cardiac Extracellular Matrix Hydrogel for Echocardiography-Directed Intramyocardial Injection in Rodents. In: Coulombe, K.L., Black III, L.D. (eds) Cardiac Tissue Engineering. Methods in Molecular Biology, vol 2485. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2261-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2261-2_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2260-5

  • Online ISBN: 978-1-0716-2261-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics