Skip to main content

Improving Recombinant Protein Recovery from Plant Tissue Using Heat Precipitation

  • Protocol
  • First Online:
Recombinant Proteins in Plants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2480))

Abstract

Plants are increasingly viewed as suitable expression hosts for the production of recombinant proteins, especially when oxidative folding and/or posttranslational modification is essential for protein stability and functionality. In contrast to traditional platforms such as yeast and mammalian cells, where the product is secreted into the culture medium, recombinant proteins expressed in plants are usually retained within the cells so additional effort is required during extraction and purification. Various extraction processes are used to release soluble proteins from plant tissues, followed by clarification to remove fibers and particulates before the target protein is purified. Fermentation media generally contain few proteins, making it easier to recover a secreted product, whereas the green juice extracted from plants usually contains a large number of host proteins that interfere with target isolation and purification. In this chapter, we describe the use of heat precipitation to remove a large portion of the host cell proteins, thus improving the efficiency of subsequent purification steps and the quality of the purified recombinant protein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Krenek P, Samajova O, Luptovciak I et al (2015) Transient plant transformation mediated by Agrobacterium tumefaciens: principles, methods and applications. Biotechnol Adv 33:1024–1042

    Article  CAS  Google Scholar 

  2. Fischer R, Vaquero-Martin C, Sack M et al (1999) Towards molecular farming in the future: transient protein expression in plants. Biotechnol Appl Biochem 30(Pt 2):113–116

    CAS  PubMed  Google Scholar 

  3. Daniell HH, Streatfield SJS, Wycoff KK (2001) Medical molecular farming: production of antibodies, biopharmaceuticals and edible vaccines in plants. Trends Plant Sci 6:219–226

    Article  CAS  Google Scholar 

  4. Ma JK-C, Christou P, Chikwamba R et al (2013) Realising the value of plant molecular pharming to benefit the poor in developing countries and emerging economies. Plant Biotechnol J 11:1029–1033

    Article  Google Scholar 

  5. Werner S, Breus O, Symonenko Y (2011) High-level recombinant protein expression in transgenic plants by using a double-inducible viral vector. Proc Natl Acad Sci U S A 108:14061–14066. https://doi.org/10.1073/pnas.1102928108

    Article  PubMed  PubMed Central  Google Scholar 

  6. Musiychuk K, Stephenson N, Bi H et al (2007) A launch vector for the production of vaccine antigens in plants. Influenza Other Respir Viruses 1:19–25

    Article  CAS  Google Scholar 

  7. Sainsbury FF, Lomonossoff GPG (2008) Extremely high-level and rapid transient protein production in plants without the use of viral replication. Plant Physiol 148:1212–1218

    Article  CAS  Google Scholar 

  8. Marsian J, Lomonossoff GPG (2016) Molecular pharming-VLPs made in plants. Curr Opin Biotechnol 37:201–206

    Article  CAS  Google Scholar 

  9. Scotti N, Rybicki EP (2013) Virus-like particles produced in plants as potential vaccines. Expert Rev Vaccines 12:211–224

    Article  CAS  Google Scholar 

  10. Tschofen M, Knopp D, Hood E (2016) Plant molecular farming: much more than medicines. Annu Rev Anal Chem 12:271–294. https://doi.org/10.1146/annurev-anchem-071015-041706

    Article  Google Scholar 

  11. O'Flaherty R, Bergin A, Flampouri E et al (2020) Mammalian cell culture for production of recombinant proteins: a review of the critical steps in their biomanufacturing. Biotechnol Adv 43:107552. https://doi.org/10.1016/j.biotechadv.2020.107552

    Article  CAS  PubMed  Google Scholar 

  12. Mattanovich D, Branduardi P, Dato L et al (2012) Recombinant protein production in yeasts. Methods Mol Biol 824:329–358. https://doi.org/10.1007/978-1-61779-433-9_17

    Article  CAS  PubMed  Google Scholar 

  13. Buyel JF, Twyman RM, Fischer R (2015) Extraction and downstream processing of plant-derived recombinant proteins. Biotechnol Adv 33:902–913. https://doi.org/10.1016/j.biotechadv.2015.04.010

    Article  CAS  PubMed  Google Scholar 

  14. Buyel JF, Fischer R (2013) Processing heterogeneous biomass: overcoming the hurdles in model building. Bioengineered 4:21–24. https://doi.org/10.4161/bioe.21671

    Article  PubMed  PubMed Central  Google Scholar 

  15. Yoruk R, Marshall MR (2003) Physicochemical properties and function of plant polyphenol oxidase: a review. J Food Biochem 27:361–422

    Article  CAS  Google Scholar 

  16. Jutras PV, Dodds I, van der Hoorn RAL (2020) Proteases of Nicotiana benthamiana: an emerging battle for molecular farming. Curr Opin Biotechnol 61:60–65. https://doi.org/10.1016/j.copbio.2019.10.006

    Article  CAS  PubMed  Google Scholar 

  17. Mandal MK, Ahvari H, Schillberg S et al (2016) Tackling unwanted proteolysis in plant production hosts used for molecular farming. Front Plant Sci 7:267. https://doi.org/10.3389/fpls.2016.00267

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wang X, Yang L, Liu J et al (2020) Comparison of the biochemical properties and thermal inactivation of polyphenol oxidase from three lily bulb cultivars. J Food Biochem 44(10):e13431. https://doi.org/10.1111/jfbc.13431

    Article  CAS  PubMed  Google Scholar 

  19. Buyel JF, Gruchow HM, Boes A et al (2014) Rational design of a host cell protein heat precipitation step simplifies the subsequent purification of recombinant proteins from tobacco. Biochem Eng J 88:162–170

    Article  CAS  Google Scholar 

  20. Menzel S, Holland T, Boes A et al (2016) Optimized blanching reduces the host cell protein content and substantially enhances the recovery and stability of two plant-derived malaria vaccine candidates. Front Plant Sci 7:159. https://doi.org/10.3389/fpls.2016.00159

    Article  PubMed  PubMed Central  Google Scholar 

  21. Beiss V, Spiegel H, Boes A et al (2015) Heat-precipitation allows the efficient purification of a functional plant-derived malaria transmission-blocking vaccine candidate fusion protein. Biotechnol Bioeng 112:1297–1305. https://doi.org/10.1002/bit.25548

    Article  CAS  PubMed  Google Scholar 

  22. Kapila J, DeRycke R, VanMontagu M et al (1997) An agrobacterium-mediated transient gene expression system for intact leaves. Plant Sci 122:101–108

    Article  CAS  Google Scholar 

  23. McLean S, Hunter CN (2009) An enzyme-coupled continuous spectrophotometric assay for magnesium protoporphyrin IX methyltransferases. Anal Biochem 394:223–228

    Article  CAS  Google Scholar 

  24. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  25. Smith BJ (1984) SDS polyacrylamide gel electrophoresis of proteins. Proteins Methods Mol Biol 1:41–56. https://doi.org/10.1385/0-89603-062-8

    Article  CAS  PubMed  Google Scholar 

  26. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76:4350–4354

    Article  CAS  Google Scholar 

  27. Jason-Moller ML, Murphy M, Bruno J (2006) Overview of biacore systems and their applications. Curr Protoc Protein Sci Chapter 19:Unit 19.13. https://doi.org/10.1002/0471140864.ps1913s45

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Richard M Twyman for editorial assistance. This work was funded in part by the Fraunhofer Zukunftsstiftung and a Fraunhofer-Gesellschaft Internal Program under Grant No. Attract 125-600164.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Spiegel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Spiegel, H. (2022). Improving Recombinant Protein Recovery from Plant Tissue Using Heat Precipitation. In: Schillberg, S., Spiegel, H. (eds) Recombinant Proteins in Plants. Methods in Molecular Biology, vol 2480. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2241-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2241-4_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2240-7

  • Online ISBN: 978-1-0716-2241-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics