Skip to main content

Generating Single Nucleotide Point Mutations in E. coli with the No-SCAR System

  • Protocol
  • First Online:
Recombineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2479))

  • 1412 Accesses

Abstract

Genetic manipulation of microbial genomes is highly relevant for studying biological systems and the development of biotechnologies. In E. coli, λ-Red recombineering is one of the most widely used gene-editing methods, enabling site-specific insertions, deletions, and point mutations of any genomic locus. The no-SCAR system combines λ-Red recombineering with CRISPR/Cas9 for programmable selection of recombinant cells. Recombineering results in the transient production of heteroduplex DNA, as only one strand of DNA is initially altered, leaving the mismatched bases susceptible to repair by the host methyl-directed mismatch repair (MMR) system and reduces the efficiency of generating single nucleotide point mutations. Here we describe a method, where expression of cas9 and the MMR-inhibiting mutLE32K variant are independently controlled by anhydrotetracycline- and cumate-inducible promoters from the pCas9CyMutL plasmid. Thus, MMR is selectively inhibited until recombinant cells have undergone replication and the desired mutation is permanently incorporated. By transiently inhibiting MMR, the accumulation of off-target mutations typically associated with MMR-deficient cell types is minimized. Methods for designing the editing template and sgRNA, cloning of the sgRNA, induction of λ-Red and MutLE32K, the transformation of editing oligo, and induction of Cas9 for mutant selection are detailed within.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645. https://doi.org/10.1073/pnas.120163297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Murphy KC (1998) Use of bacteriophage λ recombination functions to promote gene replacement in Escherichia coli. J Bacteriol 180:2063–2071. https://doi.org/10.1128/jb.180.8.2063-2071.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ellis HM, Yu D, DiTizio T, Court DL (2001) High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides. Proc Natl Acad Sci U S A 98:6742–6746. https://doi.org/10.1073/pnas.121164898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Baba T, Ara T, Hasegawa M et al (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2:2006.0008. https://doi.org/10.1038/msb4100050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Reisch CR, Prather KLJ (2015) The no-SCAR (Scarless Cas9 assisted recombineering) system for genome editing in Escherichia coli. Sci Rep 5:15096. https://doi.org/10.1038/srep15096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Reisch CR, Prather KLJ (2017) Scarless Cas9 assisted recombineering (no-SCAR) in Escherichia coli, an easy-to-use system for genome editing. Curr Protoc Mol Biol 117:31.8.1–31.8.20. https://doi.org/10.1002/cpmb.29

    Article  CAS  Google Scholar 

  7. Lim SI, Min BE, Jung GY (2008) Lagging strand-biased initiation of red recombination by linear double-stranded DNAs. J Mol Biol 384:1098–1105. https://doi.org/10.1016/j.jmb.2008.10.047

    Article  CAS  PubMed  Google Scholar 

  8. Costantino N, Court DL (2003) Enhanced levels of λ Red-mediated recombinants in mismatch repair mutants. Proc Natl Acad Sci U S A 100:15748–15753. https://doi.org/10.1073/pnas.2434959100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li XT, Costantino N, Lu LY et al (2003) Identification of factors influencing strand bias in oligonucleotide-mediated recombination in Escherichia coli. Nucleic Acids Res 31:6674–6687. https://doi.org/10.1093/nar/gkg844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sawitzke JA, Costantino N, Li XT et al (2011) Probing cellular processes with oligo-mediated recombination and using the knowledge gained to optimize recombineering. J Mol Biol 407:45–59. https://doi.org/10.1016/j.jmb.2011.01.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Maresca M, Erler A, Fu J et al (2010) Single-stranded heteroduplex intermediates in λ Red homologous recombination. BMC Mol Biol 11:54. https://doi.org/10.1186/1471-2199-11-54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schaaper RM, Dunn RL (1987) Spectra of spontaneous mutations in Escherichia coli strains defective in mismatch correction: the nature of in vivo DNA replication errors. Proc Natl Acad Sci U S A 84:6220–6224. https://doi.org/10.1073/pnas.84.17.6220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nyerges Á, Csörgo B, Nagy I et al (2014) Conditional DNA repair mutants enable highly precise genome engineering. Nucleic Acids Res 42:e62. https://doi.org/10.1093/nar/gku105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nyerges Á, Csörgo B, Nagy I et al (2016) A highly precise and portable genome engineering method allows comparison of mutational effects across bacterial species. Proc Natl Acad Sci U S A 113:2502–2507. https://doi.org/10.1073/pnas.1520040113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Meyer AJ, Segall-Shapiro TH, Glassey E et al (2019) Escherichia coli “Marionette” strains with 12 highly optimized small-molecule sensors. Nat Chem Biol 15:196–204. https://doi.org/10.1038/s41589-018-0168-3

    Article  CAS  PubMed  Google Scholar 

  16. Bae S, Park J, Kim JS (2014) Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30:1473–1475. https://doi.org/10.1093/bioinformatics/btu048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tian JQ, Quan J (2009) Circular polymerase extension cloning of complex gene libraries and pathways. PLoS One 4:e6441. https://doi.org/10.1371/journal.pone.0006441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gibson DG, Young L, Chuang RY et al (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345. https://doi.org/10.1038/nmeth.1318

    Article  CAS  PubMed  Google Scholar 

  19. Li MZ, Elledge SJ (2012) SLIC: a method for sequence- and ligation-independent cloning. Methods Mol Biol 852:51–59. https://doi.org/10.1007/978-1-61779-564-0_5

    Article  CAS  PubMed  Google Scholar 

  20. Warren DJ (2011) Preparation of highly efficient electrocompetent Escherichia coli using glycerol/mannitol density step centrifugation. Anal Biochem 413:206–207. https://doi.org/10.1016/j.ab.2011.02.036

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Department of Microbiology and Cell Science at the University of Florida for funding this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher R. Reisch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ellington, A.J., Reisch, C.R. (2022). Generating Single Nucleotide Point Mutations in E. coli with the No-SCAR System. In: Reisch, C.R. (eds) Recombineering. Methods in Molecular Biology, vol 2479. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2233-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2233-9_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2232-2

  • Online ISBN: 978-1-0716-2233-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics