Skip to main content

Monitoring Endosomal Cargo Retrieval to the Trans-Golgi Network by Microscopic and Biochemical Approaches

  • Protocol
  • First Online:
Membrane Trafficking

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2473))

Abstract

The endosomal recycling pathway plays a crucial role in diverse physiologically important biological processes such as cell-to-cell signaling, nutrient uptake, immune response, and autophagy. A selective subset of these recycling cargoes, mostly transmembrane proteins, is retrieved from endosomes to the trans-Golgi network (TGN) by a retrograde transport process. Endosome-to-TGN retrograde trafficking is crucial for maintaining cellular homeostasis and signaling by preventing proteins and lipids from degradation in the lysosome. Many of the membrane sorting machinery, such as the retromer complex and sorting nexins (SNXs) are involved in endosomal retrieval and recycling of various transmembrane proteins. Recent technological advances in the resolution of light microscopy and unbiased analytical approaches in quantitative image analysis enable us to explore and understand the regulation of membrane trafficking pathways in greater detail. In this chapter, we describe quantitative imaging-based methods for analyzing the roles of proteins involved in the retrograde trafficking in retromer dependent or independent fashion, using cation-independent mannose-6-phosphate receptor (CIM6PR) as an example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blom T, Somerharju P, Ikonen E (2011) Synthesis and biosynthetic trafficking of membrane lipids. Cold Spring Harb Perspect Biol 3:a004713. https://doi.org/10.1101/cshperspect.a004713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lippincott-Schwartz J, Phair RD (2010) Lipids and cholesterol as regulators of traffic in the endomembrane system. Annu Rev Biophys 39:559–578. https://doi.org/10.1146/annurev.biophys.093008.131357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Seaman MNJ (2021) A dimmer switch for endosome-to–cell surface recycling. J Cell Biol 220:e202102130. https://doi.org/10.1083/jcb.202102130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. O’Sullivan MJ, Lindsay AJ (2020) The endosomal recycling pathway—at the crossroads of the cell. Int J Mol Sci 21:6074. https://doi.org/10.3390/ijms21176074

    Article  CAS  PubMed Central  Google Scholar 

  5. Grant BD, Donaldson JG (2009) Pathways and mechanisms of endocytic recycling. Nat Rev Mol Cell Biol 10:597–608. https://doi.org/10.1038/nrm2755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hsu VW, Bai M, Li J (2012) Getting active: protein sorting in endocytic recycling. Nat Rev Mol Cell Biol 13:323–328. https://doi.org/10.1038/nrm3332

    Article  CAS  PubMed  Google Scholar 

  7. Sheff DR, Daro EA, Hull M, Mellman I (1999) The receptor recycling pathway contains two distinct populations of early endosomes with different sorting functions. J Cell Biol 145:123–139. https://doi.org/10.1083/jcb.145.1.123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. MacDonald E, Savage B, Zech T (2020) Connecting the dots: combined control of endocytic recycling and degradation. Biochem Soc Trans 48:2377–2386. https://doi.org/10.1042/BST20180255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tu Y, Zhao L, Billadeau DD, Jia D (2020) Endosome-to-TGN trafficking: organelle-vesicle and organelle-organelle interactions. Front Cell Dev Biol 8:163. https://doi.org/10.3389/fcell.2020.00163

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bonifacino JS, Rojas R (2006) Retrograde transport from endosomes to the trans-Golgi network. Nat Rev Mol Cell Biol 7:568–579. https://doi.org/10.1038/nrm1985

    Article  CAS  PubMed  Google Scholar 

  11. Xie S, Bahl K, Reinecke JB, Hammond GRV, Naslavsky N, Caplan S (2016) The endocytic recycling compartment maintains cargo segregation acquired upon exit from the sorting endosome. Mol Biol Cell 27:108–126. https://doi.org/10.1091/mbc.E15-07-0514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yong X, Zhao L, Deng W, Sun H, Zhou X, Mao L, Hu W, Shen X, Sun Q, Billadeau DD, Xue Y, Jia D (2020) Mechanism of cargo recognition by retromerlinked SNX-BAR proteins. PLoS Biol 18:e3000631. https://doi.org/10.1371/journal.pbio.3000631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Progida C, Bakke O (2016) Bidirectional traffic between the Golgi and the endosomes – machineries and regulation. J Cell Sci 129(21):3971–3982. https://doi.org/10.1242/jcs.185702

    Article  CAS  PubMed  Google Scholar 

  14. Burd C, Cullen PJ (2014) Retromer: a master conductor of endosome sorting. Cold Spring Harb Perspect Biol 6:a016774. https://doi.org/10.1101/cshperspect.a016774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cui Y, Carosi JM, Yang Z, Ariotti N, Kerr MC, Parton RG, Sargeant TJ, Teasdale RD (2019) Retromer has a selective function in cargo sorting via endosome transport carriers. J Cell Biol 218:615–631. https://doi.org/10.1083/jcb.201806153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. McNally KE, Cullen PJ (2018) Endosomal retrieval of cargo: Retromer is not alone. Trends Cell Biol 28:807–822. https://doi.org/10.1016/j.tcb.2018.06.005

    Article  CAS  PubMed  Google Scholar 

  17. Piper RC, Dikic I, Lukacs GL (2014) Ubiquitin-dependent sorting in endocytosis. Cold Spring Harb Perspect Biol 6:a016808. https://doi.org/10.1101/cshperspect.a016808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Piper RC, Lehner PJ (2011) Endosomal transport via ubiquitination. Trends Cell Biol 21:647–655. https://doi.org/10.1016/j.tcb.2011.08.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sharma P, Parveen S, Shah LV, Mukherjee M, Kalaidzidis Y, Kozielski AJ, Rosato R, Chang JC, Datta S (2020) SNX27–retromer assembly recycles MT1-MMP to invadopodia and promotes breast cancer metastasis. J Cell Biol 219:e201812098. https://doi.org/10.1083/jcb.201812098

    Article  CAS  PubMed  Google Scholar 

  20. Mao L, Liao C, Qin J, Gong Y, Zhou Y, Li S, Liu Z, Deng H, Deng W, Sun Q, Mo X, Xue Y, Billadeau DD, Dai L, Li G, Jia D (2021) Phosphorylation of SNX27 by MAPK11/14 links cellular stress–signaling pathways with endocytic recycling. J Cell Biol 220:e202010048. https://doi.org/10.1083/JCB.202010048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Priya A, Sugatha J, Parveen S, Lacas-Gervais S, Raj P, Gilleron J, Datta S (2017) Essential and selective role of SNX12 in transport of endocytic and retrograde cargo. J Cell Sci 130:2707–2721. https://doi.org/10.1242/jcs.201905

    Article  CAS  PubMed  Google Scholar 

  22. Lin SX, Mallet WG, Huang AY, Maxfield FR (2004) Endocytosed cation-independent mannose 6-phosphate receptor traffics via the endocytic recycling compartment en route to the trans-golgi network and a subpopulation of late endosomes. Mol Biol Cell 15(2):721–733. https://doi.org/10.1091/mbc.e03-07-0497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ghosh P, Dahms NM, Kornfeld S (2003) Mannose 6-phosphate receptors: new twists in the tale. Nat Rev Mol Cell Biol 4:202–212. https://doi.org/10.1038/nrm1050

    Article  CAS  PubMed  Google Scholar 

  24. Seaman MNJ (2004) Cargo-selective endosomal sorting for retrieval to the Golgi requires retromer. J Cell Biol 165:111–122. https://doi.org/10.1083/jcb.200312034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Arighi CN, Harmell LM, Aguilar RC, Haft CR, Bonifacino JS (2004) Role of the mammalian retromer in sorting of the cation-independent mannose 6-phosphate receptor. J Cell Biol 165:123–133. https://doi.org/10.1083/jcb.200312055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Priya A, Kalaidzidis IV, Kalaidzidis Y, Lambright D, Datta S (2015) Molecular insights into Rab7-mediated endosomal recruitment of Core Retromer: deciphering the role of Vps26 and Vps35. Traffic 16:68–84. https://doi.org/10.1111/tra.12237

    Article  CAS  PubMed  Google Scholar 

  27. Simonetti B, Danson CM, Heesom KJ, Cullen PJ (2017) Sequence-dependent cargo recognition by SNX-BARs mediates retromer-independent transport of CI-MPR. J Cell Biol 216:3695–3712. https://doi.org/10.1083/jcb.201703015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kvainickas A, Jimenez-Orgaz A, Nägele H, Hu Z, Dengjel J, Steinberg F (2017) Cargo-selective SNX-BAR proteins mediate retromer trimer independent retrograde transport. J Cell Biol 216:3677–3693. https://doi.org/10.1083/jcb.201702137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Osborne DG, Phillips-Krawczak CA, Billadeau DD (2015) Monitoring receptor trafficking following retromer and WASH deregulation. Methods Cell Biol 130:199–213. https://doi.org/10.1016/bs.mcb.2015.03.018

    Article  CAS  PubMed  Google Scholar 

  30. Breusegem SY, Seaman MNJ (2014) Image-based and biochemical assays to investigate endosomal protein sorting. Methods Enzymol 534:155–178. https://doi.org/10.1016/B978-0-12-397926-1.00009-3

    Article  CAS  PubMed  Google Scholar 

  31. Wassmer T, Attar N, Bujny MV, Oakley J, Traer CJ, Cullen PJ (2006) A loss-of-function screen reveals SNX5 and SNX6 as potential components of the mammalian retromer. J Cell Sci 120:45–54. https://doi.org/10.1242/jcs.03302

    Article  CAS  PubMed  Google Scholar 

  32. Collinet C, Stöter M, Bradshaw CR, Samusik N, Rink JC, Kenski D, Habermann B, Buchholz F, Henschel R, Mueller MS, Nagel WE, Fava E, Kalaidzidis Y, Zerial M (2010) Systems survey of endocytosis by multiparametric image analysis. Nature 464(7286):243–249. https://doi.org/10.1038/nature08779

    Article  CAS  PubMed  Google Scholar 

  33. Rink J, Ghigo E, Kalaidzidis Y, Zerial M (2005) Rab conversion as a mechanism of progression from early to late endosomes. Cell 122:735–749. https://doi.org/10.1016/j.cell.2005.06.043

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We sincerely thank Prof. M.N.J Seaman for providing us HeLa cells stably expressing GFP-Golph3 and CD8-CIM6PR reporter construct. We also thank Prof. Yannis Kalaidzidis for his tremendous help in image quantifications with MotionTracking software, and Angelika Giner for providing us with endogenous EEA1 antibody and the protocol for preparing the Mowiol mounting media. We also thank Dr. Priyanka Sharma for her help with the image quantification write-up.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Priya, A., Datta, S. (2022). Monitoring Endosomal Cargo Retrieval to the Trans-Golgi Network by Microscopic and Biochemical Approaches. In: Shen, J. (eds) Membrane Trafficking. Methods in Molecular Biology, vol 2473. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2209-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2209-4_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2208-7

  • Online ISBN: 978-1-0716-2209-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics