Skip to main content

Superresolution Microscopy for Visualization of Physical Contacts Between Chromosomes at Nanoscale Resolution

  • Protocol
  • First Online:
Chromatin

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2458))

Abstract

This protocol describes the fluorescence in situ hybridization (FISH) of DNA probes on mitotic chromosome spreads optimized for two super-resolution microscopy approaches—structured illumination microscopy (SIM) and stimulated emission depletion (STED). It is based on traditional DNA FISH methods that can be combined with immunofluorescence labeling (Immuno-FISH). This technique previously allowed us to visualize ribosomal DNA linkages between human acrocentric chromosomes and provided information about the activity status of linked rDNA loci. Compared to the conventional wide-field and confocal microscopy, the quality of SIM and STED data depends a lot more on the optimal specimen preparation, choice of fluorophores, and quality of the fluorescent labeling. This protocol highlights details that make specimens suitable for super-resolution microscopy and tips for good imaging practices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hu Q, Maurais EG, Ly P (2020) Cellular and genomic approaches for exploring structural chromosomal rearrangements. Chromosom Res 28(1):19–30. https://doi.org/10.1007/s10577-020-09626-1

    Article  CAS  Google Scholar 

  2. Cui C, Shu W, Li P (2016) Fluorescence in situ hybridization: cell-based genetic diagnostic and research applications. Front Cell Dev Biol 4:89. https://doi.org/10.3389/fcell.2016.00089

    Article  PubMed Central  PubMed  Google Scholar 

  3. Speicher MR, Carter NP (2005) The new cytogenetics: blurring the boundaries with molecular biology. Nat Rev Genet 6(10):782–792. https://doi.org/10.1038/nrg1692

    Article  CAS  PubMed  Google Scholar 

  4. Trask BJ (2002) Human cytogenetics: 46 chromosomes, 46 years and counting. Nat Rev Genet 3(10):769–778. https://doi.org/10.1038/nrg905

    Article  PubMed  Google Scholar 

  5. Potapova TA, Unruh JR, Yu Z, Rancati G, Li H, Stampfer MR, Gerton JL (2019) Superresolution microscopy reveals linkages between ribosomal DNA on heterologous chromosomes. J Cell Biol 218(8):2492–2513. https://doi.org/10.1083/jcb.201810166

    Article  PubMed Central  PubMed  Google Scholar 

  6. Dal Cin P (2003) Metaphase harvest and cytogenetic analysis of malignant hematological specimens. Curr Protoc Hum Genet Chapter 10:Unit 10.12. https://doi.org/10.1002/0471142905.hg1002s36

    Article  Google Scholar 

  7. Bangs CD, Donlon TA (2005) Metaphase chromosome preparation from cultured peripheral blood cells. Curr Protoc Hum Genet Chapter 4:Unit 4.1. https://doi.org/10.1002/0471142905.hg0401s45

    Article  PubMed  Google Scholar 

  8. Schuck PL, Stewart JA (2019) FISHing for damage on metaphase chromosomes. Methods Mol Biol 1999:335–347. https://doi.org/10.1007/978-1-4939-9500-4_24

    Article  CAS  PubMed  Google Scholar 

  9. Landegent JE, Jansen in de Wal N, van Ommen GJ, Baas F, de Vijlder JJ, van Duijn P, Van der Ploeg M (1985) Chromosomal localization of a unique gene by non-autoradiographic in situ hybridization. Nature 317(6033):175–177. https://doi.org/10.1038/317175a0

    Article  CAS  PubMed  Google Scholar 

  10. Gustafsson MG, Shao L, Carlton PM, Wang CJ, Golubovskaya IN, Cande WZ, Agard DA, Sedat JW (2008) Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys J 94(12):4957–4970. https://doi.org/10.1529/biophysj.107.120345

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Jahr W, Velicky P, Danzl JG (2020) Strategies to maximize performance in STimulated emission depletion (STED) nanoscopy of biological specimens. Methods 174:27–41. https://doi.org/10.1016/j.ymeth.2019.07.019

    Article  CAS  PubMed  Google Scholar 

  12. Solovei I, Cremer M (2010) 3D-FISH on cultured cells combined with immunostaining. Methods Mol Biol 659:117–126. https://doi.org/10.1007/978-1-60761-789-1_8

    Article  CAS  PubMed  Google Scholar 

  13. Perea-Resa C, Bury L, Cheeseman IM, Blower MD (2020) Cohesin removal reprograms gene expression upon mitotic entry. Mol Cell 78(1):127–140.e7. https://doi.org/10.1016/j.molcel.2020.01.023

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Chan FL, Marshall OJ, Saffery R, Kim BW, Earle E, Choo KH, Wong LH (2012) Active transcription and essential role of RNA polymerase II at the centromere during mitosis. Proc Natl Acad Sci U S A 109(6):1979–1984. https://doi.org/10.1073/pnas.1108705109

    Article  PubMed Central  PubMed  Google Scholar 

  15. Wegel E, Gohler A, Lagerholm BC, Wainman A, Uphoff S, Kaufmann R, Dobbie IM (2016) Imaging cellular structures in super-resolution with SIM, STED and localisation microscopy: a practical comparison. Sci Rep 6:27290. https://doi.org/10.1038/srep27290

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Schermelleh L, Heintzmann R, Leonhardt H (2010) A guide to super-resolution fluorescence microscopy. J Cell Biol 190(2):165–175. https://doi.org/10.1083/jcb.201002018

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Gustafsson MG (2000) Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc 198(Pt 2):82–87. https://doi.org/10.1046/j.1365-2818.2000.00710.x

    Article  CAS  PubMed  Google Scholar 

  18. Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19(11):780–782. https://doi.org/10.1364/ol.19.000780

    Article  CAS  PubMed  Google Scholar 

  19. Zanella R, Zanghirati G, Cavicchioli R, Zanni L, Boccacci P, Bertero M, Vicidomini G (2013) Towards real-time image deconvolution: application to confocal and STED microscopy. Sci Rep 3:2523. https://doi.org/10.1038/srep02523

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Rieder CL, Palazzo RE (1992) Colcemid and the mitotic cycle. J Cell Sci 102(Pt 3):387–392

    Article  CAS  PubMed  Google Scholar 

  21. Gorbsky GJ (1997) Cell cycle checkpoints: arresting progress in mitosis. BioEssays 19(3):193–197. https://doi.org/10.1002/bies.950190303

    Article  CAS  PubMed  Google Scholar 

  22. Lai SK, Wong CH, Lee YP, Li HY (2011) Caspase-3-mediated degradation of condensin cap-H regulates mitotic cell death. Cell Death Differ 18(6):996–1004. https://doi.org/10.1038/cdd.2010.165

    Article  CAS  PubMed  Google Scholar 

  23. Demmerle J, Innocent C, North AJ, Ball G, Muller M, Miron E, Matsuda A, Dobbie IM, Markaki Y, Schermelleh L (2017) Strategic and practical guidelines for successful structured illumination microscopy. Nat Protoc 12(5):988–1010. https://doi.org/10.1038/nprot.2017.019

    Article  CAS  PubMed  Google Scholar 

  24. Ball G, Demmerle J, Kaufmann R, Davis I, Dobbie IM, Schermelleh L (2015) SIMcheck: a toolbox for successful super-resolution structured illumination microscopy. Sci Rep 5:15915. https://doi.org/10.1038/srep15915

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Hirota T, Gerlich D, Koch B, Ellenberg J, Peters JM (2004) Distinct functions of condensin I and II in mitotic chromosome assembly. J Cell Sci 117(Pt 26):6435–6445. https://doi.org/10.1242/jcs.01604

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are thankful to the Microscopy core facility at the Stowers Institute for enabling super-resolution experiments. We thank Patrina Pellett, Jay Unruh, and Sean McKinney for conceptual help, and Brian Slaughter for the critical review of the manuscript. We thank Jennifer Gerton for mentorship and members of the Gerton lab for discussions. We are grateful to Scott Rider for assistance with labeled probes and to Martha Stampfer for HMECs. We thank Christophe Leterrier for making his collection of colorblind-friendly LUTs publicly available. This study was supported by funding from Stowers Institute for Medical Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamara A. Potapova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yu, Z., Potapova, T.A. (2022). Superresolution Microscopy for Visualization of Physical Contacts Between Chromosomes at Nanoscale Resolution. In: Horsfield, J., Marsman, J. (eds) Chromatin. Methods in Molecular Biology, vol 2458. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2140-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2140-0_20

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2139-4

  • Online ISBN: 978-1-0716-2140-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics