Skip to main content

In Vivo Aniline Blue Staining and Semiautomated Quantification of Callose Deposition at Plasmodesmata

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2457))

Abstract

The deposition and turnover of callose (beta-1,3 glucan polymer) in the cell wall surrounding the neck regions of plasmodesmata (PD) controls the cell-to-cell diffusion rate of molecules and, therefore, plays an important role in the regulation of intercellular communication in plants.

Here we describe a simple and fast in vivo staining procedure for the imaging and quantification of callose at PD. We also introduce calloseQuant, a plug-in for semiautomated image analysis and non-biased quantification of callose levels at PD using ImageJ.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. De Storme N, Geelen D (2014) Callose homeostasis at plasmodesmata: molecular regulators and developmental relevance. Front Plant Sci 5:138

    Article  Google Scholar 

  2. Lim GH, Shine MB, de Lorenzo L et al (2016) Plasmodesmata Localizing proteins regulate transport and signaling during systemic acquired immunity in plants. Cell Host Microbe 19:541–549

    Article  CAS  Google Scholar 

  3. Cui W, Lee JY (2016) Arabidopsis callose synthases CalS1/8 regulate plasmodesmal permeability during stress. Nat Plants 2:16034

    Article  CAS  Google Scholar 

  4. Vaten A, Dettmer J, Wu S et al (2011) Callose biosynthesis regulates symplastic trafficking during root development. Dev Cell 21:1144–1155

    Article  CAS  Google Scholar 

  5. Simpson C, Thomas C, Findlay K et al (2009) An Arabidopsis GPI-anchor plasmodesmal neck protein with callose binding activity and potential to regulate cell-to-cell trafficking. Plant Cell 21:581–594

    Article  CAS  Google Scholar 

  6. Levy A, Erlanger M, Rosenthal M et al (2007) A plasmodesmata-associated beta-1,3-glucanase in Arabidopsis. Plant J 49:669–682

    Article  CAS  Google Scholar 

  7. Zavaliev R, Ueki S, Epel BL et al (2011) Biology of callose (beta-1,3-glucan) turnover at plasmodesmata. Protoplasma 248:117–130

    Article  CAS  Google Scholar 

  8. Benitez-Alfonso Y, Faulkner C, Pendle A et al (2013) Symplastic intercellular connectivity regulates lateral root patterning. Dev Cell 26:136–147

    Article  CAS  Google Scholar 

  9. Stahl Y, Faulkner C (2016) Receptor complex mediated regulation of symplastic traffic. Trends Plant Sci 21:450–459

    Article  CAS  Google Scholar 

  10. Lee JY (2015) Plasmodesmata: a signaling hub at the cellular boundary. Curr Opin Plant Biol 27:133–140

    Article  CAS  Google Scholar 

  11. Faulkner C, Petutschnig E, Benitez-Alfonso Y et al (2013) LYM2-dependent chitin perception limits molecular flux via plasmodesmata. Proc Natl Acad Sci U S A 110:9166–9170

    Article  CAS  Google Scholar 

  12. Lee JY, Lu H (2011) Plasmodesmata: the battleground against intruders. Trends Plant Sci 16:201–210

    Article  CAS  Google Scholar 

  13. Oparka KJ, Roberts AG, Boevink P et al (1999) Simple, but not branched, plasmodesmata allow the nonspecific trafficking of proteins in developing tobacco leaves. Cell 97:743–754

    Article  CAS  Google Scholar 

  14. Brunkard JO, Zambryski P (2019) Plant cell-cell transport via plasmodesmata is regulated by light and the circadian clock. Plant Physiol 181:1459–1467

    Article  CAS  Google Scholar 

  15. Brunkard JO, Xu M, Scarpin MR et al (2020) TOR dynamically regulates plant cell-cell transport. Proc Natl Acad Sci U S A 117:5049–5058

    Article  CAS  Google Scholar 

  16. Brunkard JO, Runkel AM, Zambryski PC (2013) Plasmodesmata dynamics are coordinated by intracellular signaling pathways. Curr Opin Plant Biol 16:614–620

    Article  CAS  Google Scholar 

  17. Liang D (2018) A salutary role of reactive oxygen species in intercellular tunnel-mediated communication. Front Cell Dev Biol 6:2

    Article  Google Scholar 

  18. Xu B, Cheval C, Laohavisit A et al (2017) A calmodulin-like protein regulates plasmodesmal closure during bacterial immune responses. New Phytol 215:77–84

    Article  CAS  Google Scholar 

  19. Han X, Hyun TK, Zhang M et al (2014) Auxin-callose-mediated plasmodesmal gating is essential for tropic auxin gradient formation and signaling. Dev Cell 28:132–146

    Article  CAS  Google Scholar 

  20. Wang X, Sager R, Cui W et al (2013) Salicylic acid regulates plasmodesmata closure during innate immune responses in Arabidopsis. Plant Cell 25:2315–2329

    Article  CAS  Google Scholar 

  21. Rinne PL, van der Schoot C (1998) Symplasmic fields in the tunica of the shoot apical meristem coordinate morphological events. Development 125:1477–1485

    Article  CAS  Google Scholar 

  22. Rinne PL, Welling A, Vahala J et al (2011) Chilling of dormant buds hyperinduces FLOWERING LOCUS T and recruits GA-inducible 1,3-beta-glucanases to reopen signal conduits and release dormancy in Populus. Plant Cell 23:130–146

    Article  CAS  Google Scholar 

  23. Ruan YL, Llewellyn DJ, Furbank RT (2001) The control of single-celled cotton fiber elongation by developmentally reversible gating of plasmodesmata and coordinated expression of sucrose and K+ transporters and expansin. Plant Cell 13:47–60

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Zavaliev R, Levy A, Gera A et al (2013) Subcellular dynamics and role of Arabidopsis beta-1,3-glucanases in cell-to-cell movement of tobamoviruses. Mol Plant-Microbe Interact 26:1016–1030

    Article  CAS  Google Scholar 

  25. Gaudioso-Pedraza R, Beck M, Frances L et al (2018) Callose-regulated symplastic communication coordinates symbiotic root nodule development. Curr Biol 28:3562–3577.e6

    Article  CAS  Google Scholar 

  26. Currier HB (1957) Callose substance in plant cells. Am J Bot 44:478–488

    Article  Google Scholar 

  27. Thistlewhite P, Porter I, Evans N (1986) Photophysics of the aniline blue fluorophore: a fluorescent probe showing specificity toward (1->3)-beta-D-glycans. J Phys Chem 90:5058–5063

    Article  Google Scholar 

  28. Smith MM, McCully ME (1978) A critical evaluation of the specificity of aniline blue induced fluorescence. Protoplasma 95:229–254

    Article  CAS  Google Scholar 

  29. Zavaliev R, Epel BL (2015) Imaging callose at plasmodesmata using aniline blue: quantitative confocal microscopy. Methods Mol Biol 1217:105–119

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Chinese Scholarship Council (CSC) for a PhD fellowship to C.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred Heinlein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Huang, C., Mutterer, J., Heinlein, M. (2022). In Vivo Aniline Blue Staining and Semiautomated Quantification of Callose Deposition at Plasmodesmata. In: Benitez-Alfonso, Y., Heinlein, M. (eds) Plasmodesmata. Methods in Molecular Biology, vol 2457. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2132-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2132-5_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2131-8

  • Online ISBN: 978-1-0716-2132-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics