Skip to main content

Metabolic Phenotyping in Mice with NASH Using Indirect Calorimetry

  • Protocol
  • First Online:
Non-Alcoholic Steatohepatitis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2455))

Abstract

Obesity caused by caloric overload has assumed epidemic proportions. Obesity is frequently associated with metabolic dysfunctions, such as type 2 diabetes, non-alcoholic steatohepatitis (NASH), cardiovascular diseases, and cancer. Metabolic phenotyping is a set of techniques for studying metabolic dysfunction and behavior information including energy expenditure, body weight gain, glucose homeostasis, and lipid profile. Among different metabolic phenotyping methods, indirect calorimetry is an indispensable tool for quantifying the energy balance/imbalance in various mouse models, which enables researchers to probe the development of disease and to evaluate the therapeutic benefit from different interventions. In this chapter, we will describe the procedures of metabolic phenotyping using indirect calorimetry in db/db mouse, a metabolic disorder mouse model which develops NASH.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Keith SW, Redden DT, Katzmarzyk PT et al (2006) Putative contributors to the secular increase in obesity: exploring the roads less traveled. Int J Obes 30:1585–1594

    Article  CAS  Google Scholar 

  2. Dee A, Kearns K, O’Neill C et al (2014) The direct and indirect costs of both overweight and obesity: a systematic review. BMC Res Notes 7:242

    Article  Google Scholar 

  3. Popkin BM, Kim S, Rusev ER et al (2006) Measuring the full economic costs of diet, physical activity and obesity-related chronic diseases. Obes Rev 7:271–293

    Article  CAS  Google Scholar 

  4. Bhatt HB, Smith RJ (2015) Fatty liver disease in diabetes mellitus. Hepatobil Surg Nutr 4:101–108

    Google Scholar 

  5. Youssef W, McCullough AJ (2002) Diabetes mellitus, obesity, and hepatic steatosis. Semin Gastrointest Dis 13:17–30

    PubMed  Google Scholar 

  6. Fontaine E, Muller MJ (2011) Adaptive alterations in metabolism: practical consequences on energy requirements in the severely ill patient. Curr Opin Clin Nutr Metab Care 14:171–175

    Article  CAS  Google Scholar 

  7. Lodwig TH, Smeaton WA (1974) The ice calorimeter of Lavoisier and Laplace and some of its critics. Ann Sci 31:1–18

    Article  CAS  Google Scholar 

  8. Chen S, Wohlers E, Ruud E et al (2018) Improving temporal accuracy of human metabolic chambers for dynamic metabolic studies. PLoS One 13:e0193467

    Article  Google Scholar 

  9. Even PC, Nadkarni NA (2012) Indirect calorimetry in laboratory mice and rats: principles, practical considerations, interpretation and perspectives. Am J Physiol Regul Integr Comp Physiol 303:R459–R476

    Article  CAS  Google Scholar 

  10. Pendergast DR, Leddy JJ, Venkatraman JT (2000) A perspective on fat intake in athletes. J Am Coll Nutr 19:345–350

    Article  CAS  Google Scholar 

  11. Marvyn PM, Bradley RM, Mardian EB et al (2016) Data on oxygen consumption rate, respiratory exchange ratio, and movement in C57BL/6J female mice on the third day of consuming a high-fat diet. Data Brief 7:472–475

    Article  Google Scholar 

  12. Storlien L, Oakes ND, Kelley DE (2004) Metabolic flexibility. Proc Nutr Soc 63:363–368

    Article  CAS  Google Scholar 

  13. Hesselink MKC, Schrauwen-Hinderling V, Schrauwen P (2016) Skeletal muscle mitochondria as a target to prevent or treat type 2 diabetes mellitus. Nat Rev Endocrinol 12:633–645

    Article  CAS  Google Scholar 

  14. Vallerie SN, Bornfeldt KE (2015) Metabolic flexibility and dysfunction in cardiovascular cells. Arterioscler Thromb Vasc Biol 35:e37–e42

    Article  CAS  Google Scholar 

  15. Corpeleijn E, Saris WH, Blaak EE (2009) Metabolic flexibility in the development of insulin resistance and type 2 diabetes: effects of lifestyle. Obes Rev 10:178–193

    Article  CAS  Google Scholar 

  16. Corpeleijn E, Mensink M, Kooi ME et al (2008) Impaired skeletal muscle substrate oxidation in glucose-intolerant men improves after weight loss. Obesity 16:1025–1032

    Article  CAS  Google Scholar 

  17. Phielix E, Meex R, Ouwens DM et al (2012) High oxidative capacity due to chronic exercise training attenuates lipid-induced insulin resistance. Diabetes 61:2472–2478

    Article  CAS  Google Scholar 

  18. Dube JJ, Coen PM, DiStefano G et al (2014) Effects of acute lipid overload on skeletal muscle insulin resistance, metabolic flexibility, and mitochondrial performance. Am J Physiol Endocrinol Metab 307:E1117–E1124

    Article  CAS  Google Scholar 

  19. Weir JBD (1949) New methods for calculating metabolic rate with special reference to protein metabolism. J Physiol 109:1–9

    Article  Google Scholar 

  20. Trak-Smayra V, Paradis V, Massart J et al (2011) Pathology of the liver in obese and diabetic ob/ob and db/db mice fed a standard or high-calorie diet. Int J Exp Pathol 92:413–421

    Article  CAS  Google Scholar 

  21. Mina AI, LeClair RA, LeClair KB et al (2018) CalR: a web-based analysis tool for indirect calorimetry experiments. Cell Metab 28:656–666

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Ni .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ni, B., Chen, S., Farrar, J.S., Celi, F.S. (2022). Metabolic Phenotyping in Mice with NASH Using Indirect Calorimetry. In: Sarkar, D. (eds) Non-Alcoholic Steatohepatitis. Methods in Molecular Biology, vol 2455. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2128-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2128-8_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2127-1

  • Online ISBN: 978-1-0716-2128-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics