Skip to main content

Computational Pipeline for Next-Generation Sequencing (NGS) Studies in Genetics of NASH

  • Protocol
  • First Online:
Non-Alcoholic Steatohepatitis

Abstract

High-throughput sequencing (HTS) technologies have contributed to expand current knowledge of the biology of complex diseases, including nonalcoholic fatty liver disease (NAFLD). Genome-wide association studies, whole exome sequencing, and sequencing of entire genes are used to identify variants and/or mutations that predispose to the disease pathogenesis. Here, we present a tutorial that may guide readers to manage high volume of genetics data in the context of Next-Generation Sequencing (NGS) studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sookoian S, Pirola CJ (2017) Genetic predisposition in nonalcoholic fatty liver disease. Clin Mol Hepatol 23:1–12

    Article  Google Scholar 

  2. Sookoian S, Rohr C, Salatino A et al (2017) Genetic variation in long noncoding RNAs and the risk of nonalcoholic fatty liver disease. Oncotarget 8:22917–22926.15286

    Article  Google Scholar 

  3. Sookoian S, Pirola CJ (2020) Precision medicine in nonalcoholic fatty liver disease: new therapeutic insights from genetics and systems biology. Clin Mol Hepatol 26:461–475

    Article  Google Scholar 

  4. Romeo S, Kozlitina J, Xing C et al (2008) Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet 40:1461–1465

    Article  CAS  Google Scholar 

  5. Sookoian S, Castano GO, Burgueno AL et al (2009) A nonsynonymous gene variant in the adiponutrin gene is associated with nonalcoholic fatty liver disease severity. J Lipid Res 50:2111–2116

    Article  CAS  Google Scholar 

  6. Sookoian S, Pirola CJ (2011) Meta-analysis of the influence of I148M variant of patatin-like phospholipase domain containing 3 gene (PNPLA3) on the susceptibility and histological severity of nonalcoholic fatty liver disease. Hepatology 53:1883–1894

    Article  CAS  Google Scholar 

  7. Kozlitina J, Smagris E, Stender S et al (2014) Exome-wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease. Nat Genet 46:352–356

    Article  CAS  Google Scholar 

  8. Sookoian S, Castano GO, Scian R et al (2015) Genetic variation in transmembrane 6 superfamily member 2 and the risk of nonalcoholic fatty liver disease and histological disease severity. Hepatology 61:515–525

    Article  CAS  Google Scholar 

  9. Abul-Husn NS, Cheng X, Li AH et al (2018) A protein-truncating HSD17B13 variant and protection from chronic liver disease. N Engl J Med 378:1096–1106

    Article  CAS  Google Scholar 

  10. Pirola CJ, Garaycoechea M, Flichman D et al (2019) Splice variant rs72613567 prevents worst histologic outcomes in patients with nonalcoholic fatty liver disease. J Lipid Res 60:176–185

    Article  CAS  Google Scholar 

  11. Ma Y, Belyaeva OV, Brown PM et al (2019) 17-beta hydroxysteroid dehydrogenase 13 is a hepatic retinol dehydrogenase associated with histological features of nonalcoholic fatty liver disease. Hepatology 69:1504–1519

    Article  CAS  Google Scholar 

  12. Pirola CJ, Flichman D, Dopazo H et al (2018) A rare nonsense mutation in the glucokinase regulator gene is associated with a rapidly progressive clinical form of nonalcoholic steatohepatitis. Hepatol Commun 2:1030–1036

    Article  CAS  Google Scholar 

  13. Pirola CJ, Garaycoechea M, Flichman D et al (2021) Liver mitochondrial DNA damage and genetic variability of Cytochrome b—a key component of the respirasome—drive the severity of fatty liver disease. J Intern Med 289:84–96

    Article  CAS  Google Scholar 

  14. Sookoian S, Flichman D, Scian R et al (2016) Mitochondrial genome architecture in non-alcoholic fatty liver disease. J Pathol 240:437–449

    Article  CAS  Google Scholar 

  15. Cock PJ, Fields CJ, Goto N et al (2010) The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants. Nucleic Acids Res 38:1767–1771

    Article  CAS  Google Scholar 

  16. Li H, Handsaker B, Wysoker A et al (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25:2078–2079

    Article  Google Scholar 

  17. Danecek P, Auton A, Abecasis G et al (2011) The variant call format and VCFtools. Bioinformatics 27:2156–2158

    Article  CAS  Google Scholar 

  18. Li H (2011) Tabix: fast retrieval of sequence features from generic TAB-delimited files. Bioinformatics 27:718–719

    Article  Google Scholar 

  19. Quinlan AR (2014) BEDTools: the Swiss-army tool for genome feature analysis. Curr Protoc Bioinformatics 47:11–34

    Article  Google Scholar 

  20. Gruning B, Dale R, Sjodin A et al (2018) Bioconda: sustainable and comprehensive software distribution for the life sciences. Nat Methods 15:475–476

    Article  Google Scholar 

  21. Wingett SW, Andrews S (2018) FastQ Screen: a tool for multi-genome mapping and quality control. F1000Res 7:1338

    Article  Google Scholar 

  22. Ewels P, Magnusson M, Lundin S et al (2016) MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32:3047–3048

    Article  CAS  Google Scholar 

  23. Okonechnikov K, Conesa A, Garcia-Alcalde F (2016) Qualimap 2: advanced multi-sample quality control for high-throughput sequencing data. Bioinformatics 32:292–294

    CAS  PubMed  Google Scholar 

  24. Li H (2011) Improving SNP discovery by base alignment quality. Bioinformatics 27:1157–1158

    Article  CAS  Google Scholar 

  25. Cleary JG, Braithwaite R, Gaastra K et al (2014) Joint variant and de novo mutation identification on pedigrees from high-throughput sequencing data. J Comput Biol 21:405–419

    Article  CAS  Google Scholar 

  26. Tan A, Abecasis GR, Kang HM (2015) Unified representation of genetic variants. Bioinformatics 31:2202–2204

    Article  CAS  Google Scholar 

  27. Purcell S, Neale B, Todd-Brown K et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575

    Article  CAS  Google Scholar 

  28. Chang CC, Chow CC, Tellier LC et al (2015) Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4:7

    Article  Google Scholar 

Download references

Acknowledgments

This study was partially supported by Grants PICT 2018-0620, PICT 2018-0889, and PICT 2016-0135 (Agencia Nacional de Promoción Científica y Tecnológica, FONCyT), Proyectos Unidades Ejecutoras 2017, PUE 0055(CONICET).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Silvia Sookoian or Carlos J. Pirola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Salatino, A., Sookoian, S., Pirola, C.J. (2022). Computational Pipeline for Next-Generation Sequencing (NGS) Studies in Genetics of NASH. In: Sarkar, D. (eds) Non-Alcoholic Steatohepatitis. Methods in Molecular Biology, vol 2455. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2128-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2128-8_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2127-1

  • Online ISBN: 978-1-0716-2128-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics