Skip to main content

Isolation of the Stromal Vascular Fraction from Adipose Tissue and Subsequent Differentiation into White or Beige Adipocytes

  • Protocol
  • First Online:
Non-Alcoholic Steatohepatitis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2455))

Abstract

Non-alcoholic steatohepatitis (NASH) is linked to adipose tissue dysfunction, with weight loss being the only treatment shown to reverse it. Due to this correlation with obesity, the study of adipose tissue and adipocytes is an important step in understanding the pathogenesis of this disease. Here, we describe the isolation process of the stromal vascular fraction (SVF) of adipose tissue. The SVF contains the foundational cells that will differentiate into adipocytes. These cells can be isolated and subsequently differentiated in vitro into white and beige adipocytes. We outline the in vitro differentiation of pre-adipocytes into cultured white and beige adipocytes using both human and mouse adipose tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hales C, Carroll M, Fryar C et al (2017) Prevalence of obesity and severe obesity among adults: USA, 2017–2018. NCHS Data Brief 360:1–8

    Google Scholar 

  2. Finkelstein E, Trogdon J, Cohen J et al (2009) Annual medical spending attributable to obesity: payer-and service-specific estimates. Health Aff 28:822–831

    Article  Google Scholar 

  3. Saltiel A (2016) New therapeutic approaches for the treatment of obesity. Sci Transl Med 8:323

    Article  Google Scholar 

  4. Sanada H, Yokokawa H, Yoneda M et al (2012) High body mass index is an important risk factor for the development of type 2 diabetes. Intern Med 51:1821–1826

    Article  CAS  Google Scholar 

  5. Zhang Y, Ren J (2016) Epigenetics and obesity cardiomyopathy: from pathophysiology to prevention and management. Pharmacol Ther 161:52–66

    Article  CAS  Google Scholar 

  6. Sarwar R, Pierce N, Koppe S (2018) Obesity and nonalcoholic fatty liver disease: current perspectives. Diabetes Metab Syndr Obes 11:533–542

    Article  CAS  Google Scholar 

  7. Hashimoto E, Taniai M, Tokushige K (2013) Characteristics and diagnosis of NAFLD/NASH. J Gastroenterol Hepatol 28:64–70

    Article  CAS  Google Scholar 

  8. Poekes L, Gillard J, Farrell G et al (2019) Activation of brown adipose tissue enhances the efficacy of caloric restriction for treatment of nonalcoholic steatohepatitis. Lab Investig 99:4–16

    Article  CAS  Google Scholar 

  9. Vonghia L, Francque S (2015) Cross talk of the immune system in the adipose tissue and the liver in non-alcoholic steatohepatitis: pathology and beyond. World J Hepatol 7:1905–1912

    Article  Google Scholar 

  10. Younossi Z, Tampi R, Racila A et al (2020) Economic and clinical burden of nonalcoholic steatohepatitis in patients with type 2 diabetes in the USA. Diabetes Care 43:283–289

    Article  Google Scholar 

  11. Sharma A, Ramos Salas X (2018) Obesity prevention and management strategies in Canada: shifting paradigms and putting people first. Curr Obes Rep 7:89–96

    Article  Google Scholar 

  12. Ronti T, Lupattelli G, Mannarino E (2006) The endocrine function of adipose tissue: an update. Clin Endocrinol 64:355–365

    CAS  Google Scholar 

  13. Rosen E, Spiegelman B (2006) Adipocytes as regulators of energy balance and glucose homeostasis. Nature 444:847–853

    Article  CAS  Google Scholar 

  14. Parker R (2018) The role of adipose tissue in fatty liver diseases. Liver Res 2:35–42

    Article  Google Scholar 

  15. Ibrahim S, Kohli R, Gores G (2011) Mechanisms of lipotoxicity in NAFLD and clinical implications. J Pediatr Gastroenterol Nutr 53:131–140

    Article  CAS  Google Scholar 

  16. Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84:277–359

    Article  CAS  Google Scholar 

  17. Cereijo R, Giralt M, Villarroya F (2015) Thermogenic brown and beige/brite adipogenesis in humans. Ann Med 47:169–177

    Article  CAS  Google Scholar 

  18. Sidossis L, Kajimura S (2015) Brown and beige fat in humans: thermogenic adipocytes that control energy and glucose homeostasis. J Clin Invest 125:478–486

    Article  Google Scholar 

  19. Kim S, Plutzky J (2016) Brown fat and browning for the treatment of obesity and related metabolic disorders. Diabetes Metab J 40:12–21

    Article  Google Scholar 

  20. Seale P, Bjork B, Yang W et al (2008) PRDM16 controls a brown fat/skeletal muscle switch. Nature 454:961–967

    Article  CAS  Google Scholar 

  21. Ni B, Farrar J, Chen S et al (2018) A novel role for PTK2B in cultured beige adipocyte differentiation. Biochem Biophys Res Commun 501:851–857

    Article  CAS  Google Scholar 

  22. Mann A, Thompson A, Robbins N, Blomkalns A (2014) Localization, identification, and excision of murine adipose depots. J Vis Exp 4:52174

    Google Scholar 

  23. Chusyd D, Wang D, Huffman D et al (2016) Relationships between rodent adipose fat pads and human white adipose fat depots. Front Nutr 19:10

    Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from Virginia Commonwealth University’s CTSA award (UL1TR002649 from the National Center for Advancing Translational Sciences) and the CCTR Endowment Fund of Virginia Commonwealth University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca K. Martin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Farrar, J.S., Martin, R.K. (2022). Isolation of the Stromal Vascular Fraction from Adipose Tissue and Subsequent Differentiation into White or Beige Adipocytes. In: Sarkar, D. (eds) Non-Alcoholic Steatohepatitis. Methods in Molecular Biology, vol 2455. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2128-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2128-8_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2127-1

  • Online ISBN: 978-1-0716-2128-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics