Skip to main content

Pseudovirus-Based Assays for the Measurement of Antibody-Mediated Neutralization of SARS-CoV-2

  • Protocol
  • First Online:
SARS-CoV-2

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2452))

Abstract

SARS-CoV-2 has emerged as a significant cause of morbidity and mortality worldwide. Virus neutralization assays are critical for the development and evaluation of vaccines and immunotherapeutics, as well as for conducting basic research into the immune response, spread, and pathogenesis of this disease. However, neutralization assays traditionally require the use of infectious virus which must be carefully handled in a BSL-3 setting, thus complicating the assay and restricting its use to labs with access to BSL-3 facilities. Pseudovirus-based assays are an alternative to the use of infectious virus. SARS-CoV-2 pseudovirus contains only the spike structural protein, and infection results in a single round of replication, thus allowing for the assay to be run safely under BSL-2 conditions. In this chapter, we describe protocols and considerations for the production and titration of lentivirus-based SARS-CoV-2 pseudovirus, as well as for running and analysis of FACS-based pseudovirus neutralization assays.

Copyright Statement:

Peifang Sun, Maya Williams, Gabriel Defang, and Kevin R. Porter authors are military service members or federal/contracted employees of the U.S. Government. This work was prepared as part of their official duties. Title 17 U.S.C. 105 provides that “copyright protection under this title is not available for any work of the United States Government.” Title 17 U.S.C. 101 defines a U.S. Government work as a work prepared by a military service member or employee of the U.S. Government as part of that person’s official duties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kim D, Lee JY, Yang JS, Kim JW, Kim VN, Chang H (2020) The architecture of SARS-CoV-2 transcriptome. Cell 181(4):914–921.e10. https://doi.org/10.1016/j.cell.2020.04.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hu B, Guo H, Zhou P, Shi ZL (2020) Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol 19(3):141–154. https://doi.org/10.1038/s41579-020-00459-7

    Article  CAS  PubMed  Google Scholar 

  3. Jiang S, Hillyer C, Du L (2020) Neutralizing antibodies against SARS-CoV-2 and other human coronaviruses. Trends Immunol 41(5):355–359. https://doi.org/10.1016/j.it.2020.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ou X, Liu Y, Lei X, Li P, Mi D, Ren L, Guo L, Guo R, Chen T, Hu J, Xiang Z, Mu Z, Chen X, Chen J, Hu K, Jin Q, Wang J, Qian Z (2020) Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun 11(1):1620. https://doi.org/10.1038/s41467-020-15562-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mossel EC, Huang C, Narayanan K, Makino S, Tesh RB, Peters CJ (2005) Exogenous ACE2 expression allows refractory cell lines to support severe acute respiratory syndrome coronavirus replication. J Virol 79(6):3846–3850. https://doi.org/10.1128/JVI.79.6.3846-3850.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jia HP, Look DC, Shi L, Hickey M, Pewe L, Netland J, Farzan M, Wohlford-Lenane C, Perlman S, McCray PB Jr (2005) ACE2 receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human airway epithelia. J Virol 79(23):14614–14621. https://doi.org/10.1128/JVI.79.23.14614-14621.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ashhurst AS, Tang AH, Fajtova P, Yoon M, Aggarwal A, Stoye A, Larance M, Beretta L, Drelich A, Skinner D, Li L, Meek TD, McKerrow JH, Hook V, Tseng CK, Turville S, Gerwick WH, O’Donoghue AJ, Payne RJ (2020) Potent in vitro anti-SARS-CoV-2 activity by gallinamide A and analogues via inhibition of cathepsin L. bioRxiv. https://doi.org/10.1101/2020.12.23.424111

  8. Padmanabhan P, Desikan R, Dixit NM (2020) Targeting TMPRSS2 and cathepsin B/L together may be synergistic against SARS-CoV-2 infection. PLoS Comput Biol 16(12):e1008461. https://doi.org/10.1371/journal.pcbi.1008461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Duan L, Zheng Q, Zhang H, Niu Y, Lou Y, Wang H (2020) The SARS-CoV-2 spike glycoprotein biosynthesis, structure, function, and antigenicity: implications for the design of spike-based vaccine immunogens. Front Immunol 11:576622. https://doi.org/10.3389/fimmu.2020.576622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, Muller MA, Drosten C, Pohlmann S (2020) SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181(2):271–280.e8. https://doi.org/10.1016/j.cell.2020.02.052

    Article  PubMed  PubMed Central  Google Scholar 

  11. Fuentes-Prior P (2020) Priming of SARS-CoV-2 S protein by several membrane-bound serine proteinases could explain enhanced viral infectivity and systemic COVID-19 infection. J Biol Chem 296:100135. https://doi.org/10.1074/jbc.REV120.015980

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hoffmann M, Kleine-Weber H, Pohlmann S (2020) A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells. Mol Cell 78(4):779–784.e5. https://doi.org/10.1016/j.molcel.2020.04.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jaimes JA, Millet JK, Whittaker GR (2020) Proteolytic cleavage of the SARS-CoV-2 spike protein and the role of the novel S1/S2 site. iScience 23(6):101212. https://doi.org/10.1016/j.isci.2020.101212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Muruato AE, Fontes-Garfias CR, Ren P, Garcia-Blanco MA, Menachery VD, Xie X, Shi PY (2020) A high-throughput neutralizing antibody assay for COVID-19 diagnosis and vaccine evaluation. bioRxiv. https://doi.org/10.1101/2020.05.21.109546

  15. Amanat F, White KM, Miorin L, Strohmeier S, McMahon M, Meade P, Liu WC, Albrecht RA, Simon V, Martinez-Sobrido L, Moran T, Garcia-Sastre A, Krammer F (2020) An in vitro microneutralization assay for SARS-CoV-2 serology and drug screening. Curr Protoc Microbiol 58(1):e108. https://doi.org/10.1002/cpmc.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li Q, Wu J, Nie J, Zhang L, Hao H, Liu S, Zhao C, Zhang Q, Liu H, Nie L, Qin H, Wang M, Lu Q, Li X, Sun Q, Liu J, Zhang L, Li X, Huang W, Wang Y (2020) The impact of mutations in SARS-CoV-2 spike on viral infectivity and antigenicity. Cell 182(5):1284–1294.e9. https://doi.org/10.1016/j.cell.2020.07.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Greaney AJ, Loes AN, Crawford KHD, Starr TN, Malone KD, Chu HY, Bloom JD (2021) Comprehensive mapping of mutations in the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human plasma antibodies. Cell Host Microbe 29(3):463–476.e6

    Article  CAS  Google Scholar 

  18. Chen Q, Tang K, Zhang X, Chen P, Guo Y (2018) Establishment of pseudovirus infection mouse models for in vivo pharmacodynamics evaluation of filovirus entry inhibitors. Acta Pharm Sin B 8(2):200–208. https://doi.org/10.1016/j.apsb.2017.08.003

    Article  PubMed  Google Scholar 

  19. Zhang L, Li Q, Liu Q, Huang W, Nie J, Wang Y (2017) A bioluminescent imaging mouse model for Marburg virus based on a pseudovirus system. Hum Vaccin Immunother 13(8):1811–1817. https://doi.org/10.1080/21645515.2017.1325050

    Article  PubMed  PubMed Central  Google Scholar 

  20. Li Q, Liu Q, Huang W, Wu J, Nie J, Wang M, Zhao C, Zhang L, Wang Y (2017) An LASV GPC pseudotyped virus based reporter system enables evaluation of vaccines in mice under non-BSL-4 conditions. Vaccine 35(38):5172–5178. https://doi.org/10.1016/j.vaccine.2017.07.101

    Article  CAS  PubMed  Google Scholar 

  21. Wu J, Zhao C, Liu Q, Huang W, Wang Y (2017) Development and application of a bioluminescent imaging mouse model for Chikungunya virus based on pseudovirus system. Vaccine 35(47):6387–6394. https://doi.org/10.1016/j.vaccine.2017.10.007

    Article  CAS  PubMed  Google Scholar 

  22. Nie J, Liu L, Wang Q, Chen R, Ning T, Liu Q, Huang W, Wang Y (2019) Nipah pseudovirus system enables evaluation of vaccines in vitro and in vivo using non-BSL-4 facilities. Emerg Microbes Infect 8(1):272–281. https://doi.org/10.1080/22221751.2019.1571871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Han DP, Kim HG, Kim YB, Poon LL, Cho MW (2004) Development of a safe neutralization assay for SARS-CoV and characterization of S-glycoprotein. Virology 326(1):140–149. https://doi.org/10.1016/j.virol.2004.05.017

    Article  CAS  PubMed  Google Scholar 

  24. Zhao G, Du L, Ma C, Li Y, Li L, Poon VK, Wang L, Yu F, Zheng BJ, Jiang S, Zhou Y (2013) A safe and convenient pseudovirus-based inhibition assay to detect neutralizing antibodies and screen for viral entry inhibitors against the novel human coronavirus MERS-CoV. Virol J 10:266. https://doi.org/10.1186/1743-422X-10-266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Johnson MC, Lyddon TD, Suarez R, Salcedo B, LePique M, Graham M, Ricana C, Robinson C, Ritter DG (2020) Optimized pseudotyping conditions for the SARS-COV-2 spike glycoprotein. J Virol 94(21):e01062-20. https://doi.org/10.1128/JVI.01062-20

    Article  PubMed  PubMed Central  Google Scholar 

  26. Pinto D, Park YJ, Beltramello M, Walls AC, Tortorici MA, Bianchi S, Jaconi S, Culap K, Zatta F, De Marco A, Peter A, Guarino B, Spreafico R, Cameroni E, Case JB, Chen RE, Havenar-Daughton C, Snell G, Telenti A, Virgin HW, Lanzavecchia A, Diamond MS, Fink K, Veesler D, Corti D (2020) Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature 583(7815):290–295. https://doi.org/10.1038/s41586-020-2349-y

    Article  CAS  PubMed  Google Scholar 

  27. Huang SW, Tai CH, Hsu YM, Cheng D, Hung SJ, Chai KM, Wang YF, Wang JR (2020) Assessing the application of a pseudovirus system for emerging SARS-CoV-2 and re-emerging avian influenza virus H5 subtypes in vaccine development. Biomed J 43(4):375–387. https://doi.org/10.1016/j.bj.2020.06.003

    Article  PubMed  PubMed Central  Google Scholar 

  28. Crawford KHD, Eguia R, Dingens AS, Loes AN, Malone KD, Wolf CR, Chu HY, Tortorici MA, Veesler D, Murphy M, Pettie D, King NP, Balazs AB, Bloom JD (2020) Protocol and reagents for pseudotyping lentiviral particles with SARS-CoV-2 spike protein for neutralization assays. Viruses 12(5):513. https://doi.org/10.3390/v12050513

    Article  CAS  PubMed Central  Google Scholar 

  29. Yang R, Huang B, Ruhan A, Li W, Wang W, Deng Y, Tan W (2020) Development and effectiveness of pseudotyped SARS-CoV-2 system as determined by neutralizing efficiency and entry inhibition test in vitro. Biosaf Health 2(4):226–231. https://doi.org/10.1016/j.bsheal.2020.08.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xiong HL, Wu YT, Cao JL, Yang R, Liu YX, Ma J, Qiao XY, Yao XY, Zhang BH, Zhang YL, Hou WH, Shi Y, Xu JJ, Zhang L, Wang SJ, Fu BR, Yang T, Ge SX, Zhang J, Yuan Q, Huang BY, Li ZY, Zhang TY, Xia NS (2020) Robust neutralization assay based on SARS-CoV-2 S-protein-bearing vesicular stomatitis virus (VSV) pseudovirus and ACE2-overexpressing BHK21 cells. Emerg Microbes Infect 9(1):2105–2113. https://doi.org/10.1080/22221751.2020.1815589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nie J, Li Q, Wu J, Zhao C, Hao H, Liu H, Zhang L, Nie L, Qin H, Wang M, Lu Q, Li X, Sun Q, Liu J, Fan C, Huang W, Xu M, Wang Y (2020) Establishment and validation of a pseudovirus neutralization assay for SARS-CoV-2. Emerg Microbes Infect 9(1):680–686. https://doi.org/10.1080/22221751.2020.1743767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Oguntuyo KY, Stevens CS, Hung CT, Ikegame S, Acklin JA, Kowdle SS, Carmichael JC, Chiu HP, Azarm KD, Haas GD, Amanat F, Klingler J, Baine I, Arinsburg S, Bandres JC, Siddiquey MNA, Schilke RM, Woolard MD, Zhang H, COVIDAR Argentina Consortium, Duty AJ, Kraus TA, Moran TM, Tortorella D, Lim JK, Gamarnik AV, Hioe CE, Zolla-Pazner S, Ivanov SS, Kamil JP, Krammer F, Lee B. Quantifying absolute neutralization titers against SARS-CoV-2 by a standardized virus neutralization assay allows for cross-cohort comparisons of COVID-19 sera. medRxiv [Preprint]. 2020. https://doi.org/10.1101/2020.08.13.20157222. Update in: mBio. 2021;12(1): PMID: 32817961; PMCID: PMC7430605

  33. Almahboub SA, Algaissi A, Alfaleh MA, ElAssouli MZ, Hashem AM (2020) Evaluation of neutralizing antibodies against highly pathogenic coronaviruses: a detailed protocol for a rapid evaluation of neutralizing antibodies using vesicular stomatitis virus pseudovirus-based assay. Front Microbiol 11:2020. https://doi.org/10.3389/fmicb.2020.02020

    Article  PubMed  PubMed Central  Google Scholar 

  34. Schmidt F, Weisblum Y, Muecksch F, Hoffmann HH, Michailidis E, Lorenzi JCC, Mendoza P, Rutkowska M, Bednarski E, Gaebler C, Agudelo M, Cho A, Wang Z, Gazumyan A, Cipolla M, Caskey M, Robbiani DF, Nussenzweig MC, Rice CM, Hatziioannou T, Bieniasz PD (2020) Measuring SARS-CoV-2 neutralizing antibody activity using pseudotyped and chimeric viruses. bioRxiv. https://doi.org/10.1101/2020.06.08.140871

  35. Zhang L, Jackson CB, Mou H, Ojha A, Rangarajan ES, Izard T, Farzan M, Choe H (2020) The D614G mutation in the SARS-CoV-2 spike protein reduces S1 shedding and increases infectivity. bioRxiv. https://doi.org/10.1101/2020.06.12.148726

  36. Plante JA, Liu Y, Liu J, Xia H, Johnson BA, Lokugamage KG, Zhang X, Muruato AE, Zou J, Fontes-Garfias CR, Mirchandani D, Scharton D, Bilello JP, Ku Z, An Z, Kalveram B, Freiberg AN, Menachery VD, Xie X, Plante KS, Weaver SC, Shi PY (2020) Spike mutation D614G alters SARS-CoV-2 fitness. Nature 592(7852):116–121. https://doi.org/10.1038/s41586-020-2895-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hu J, He C-L, Gao Q-Z, Zhang G-J, Cao X-X, Long Q-X, Deng H-J, Huang L-Y, Chen J, Wang K, Tang N, Huang A-L (2020) The D614G mutation of SARS-CoV-2 spike protein enhances viral infectivity and decreases neutralization sensitivity to individual convalescent sera. bioRxiv. https://doi.org/10.1101/2020.06.20.161323

  38. Ogando NS, Dalebout TJ, Zevenhoven-Dobbe JC, Limpens R, van der Meer Y, Caly L, Druce J, de Vries JJC, Kikkert M, Barcena M, Sidorov I, Snijder EJ (2020) SARS-coronavirus-2 replication in Vero E6 cells: replication kinetics, rapid adaptation and cytopathology. J Gen Virol 101(9):925–940. https://doi.org/10.1099/jgv.0.001453

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kemp SA, Collier DA, Datir R, Ferreira I, Gayed S, Jahun A, Hosmillo M, Rees-Spear C, Mlcochova P, Lumb IU, Roberts DJ, Chandra A, Temperton N, Sharrocks K, Blane E, Briggs J, van Gils MJ, Smith K, Bradley JR, Smith C, Doffinger R, Ceron-Gutierrez L, Barcenas-Morales G, Pollock DD, Goldstein RA, Smielewska A, Skittrall JP, Gouliouris T, Goodfellow IG, Gkrania-Klotsas E, Illingworth C, McCoy LE, Gupta RK (2020) Neutralising antibodies in spike mediated SARS-CoV-2 adaptation. medRxiv. https://doi.org/10.1101/2020.12.05.20241927

  40. Weisblum Y, Schmidt F, Zhang F, DaSilva J, Poston D, Lorenzi JC, Muecksch F, Rutkowska M, Hoffmann HH, Michailidis E, Gaebler C, Agudelo M, Cho A, Wang Z, Gazumyan A, Cipolla M, Luchsinger L, Hillyer CD, Caskey M, Robbiani DF, Rice CM, Nussenzweig MC, Hatziioannou T, Bieniasz PD (2020) Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants. elife 9:e61312. https://doi.org/10.7554/eLife.61312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Thomson EC, Rosen LE, Shepherd JG, Spreafico R, da Silva Filipe A, Wojcechowskyj JA, Davis C, Piccoli L, Pascall DJ, Dillen J, Lytras S, Czudnochowski N, Shah R, Meury M, Jesudason N, De Marco A, Li K, Bassi J, O’Toole A, Pinto D, Colquhoun RM, Culap K, Jackson B, Zatta F, Rambaut A, Jaconi S, Sreenu VB, Nix J, Jarrett RF, Beltramello M, Nomikou K, Pizzuto M, Tong L, Cameroni E, Johnson N, Wickenhagen A, Ceschi A, Mair D, Ferrari P, Smollett K, Sallusto F, Carmichael S, Garzoni C, Nichols J, Galli M, Hughes J, Riva A, Ho A, Semple MG, Openshaw PJM, Baillie JK, Rihn SJ, Lycett SJ, Virgin HW, Telenti A, Corti D, Robertson DL, Snell G (2020) The circulating SARS-CoV-2 spike variant N439K maintains fitness while evading antibody-mediated immunity. bioRxiv. https://doi.org/10.1101/2020.11.04.355842

  42. Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q (2020) Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 367(6485):1444–1448. https://doi.org/10.1126/science.abb2762

    Article  PubMed  PubMed Central  Google Scholar 

  43. Mukherjee S, Pierson TC, Dowd KA (2014) Pseudo-infectious reporter virus particles for measuring antibody-mediated neutralization and enhancement of dengue virus infection. Methods Mol Biol 1138:75–97. https://doi.org/10.1007/978-1-4939-0348-1_6

    Article  CAS  PubMed  Google Scholar 

  44. Andrewes CH, Elford WJ (1933) Observations on anti-phage sera. I: “the percentage law”. Br J Exp Pathol 14(6):367–376

    CAS  PubMed Central  Google Scholar 

  45. Klasse PJ, Sattentau QJ (2002) Occupancy and mechanism in antibody-mediated neutralization of animal viruses. J Gen Virol 83(Pt 9):2091–2108. https://doi.org/10.1099/0022-1317-83-9-2091

    Article  CAS  PubMed  Google Scholar 

  46. Klasse PJ (2014) Neutralization of virus infectivity by antibodies: old problems in new perspectives. Adv Biol 2014:157895. https://doi.org/10.1155/2014/157895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pierson TC, Sanchez MD, Puffer BA, Ahmed AA, Geiss BJ, Valentine LE, Altamura LA, Diamond MS, Doms RW (2006) A rapid and quantitative assay for measuring antibody-mediated neutralization of West Nile virus infection. Virology 346(1):53–65. https://doi.org/10.1016/j.virol.2005.10.030

    Article  CAS  PubMed  Google Scholar 

  48. Cai W, Tang ZM, Wen GP, Wang SL, Ji WF, Yang M, Ying D, Zheng ZZ, Xia NS (2016) A high-throughput neutralizing assay for antibodies and sera against hepatitis E virus. Sci Rep 6:25141. https://doi.org/10.1038/srep25141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chen M, Chang JS, Nason M, Rangel D, Gall JG, Graham BS, Ledgerwood JE (2010) A flow cytometry-based assay to assess RSV-specific neutralizing antibody is reproducible, efficient and accurate. J Immunol Methods 362(1–2):180–184. https://doi.org/10.1016/j.jim.2010.08.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pastorino B, Touret F, Gilles M, de Lamballerie X, Charrel RN (2020) Heat inactivation of different types of SARS-CoV-2 samples: what protocols for biosafety, molecular detection and serological diagnostics? Viruses 12(7):735. https://doi.org/10.3390/v12070735

    Article  CAS  PubMed Central  Google Scholar 

  51. Wang TT, Lien CZ, Liu S, Selvaraj P (2020) Effective heat inactivation of SARS-CoV-2. medRxiv. https://doi.org/10.1101/2020.04.29.20085498

  52. Batéjat C, Grassin Q, Manuguerra J-C, Leclercq I (2020) Heat inactivation of the severe acute respiratory syndrome coronavirus 2. bioRxiv. https://doi.org/10.1101/2020.05.01.067769

  53. McCoy LE, Falkowska E, Doores KJ, Le K, Sok D, van Gils MJ, Euler Z, Burger JA, Seaman MS, Sanders RW, Schuitemaker H, Poignard P, Wrin T, Burton DR (2015) Incomplete neutralization and deviation from sigmoidal neutralization curves for HIV broadly neutralizing monoclonal antibodies. PLoS Pathog 11(8):e1005110. https://doi.org/10.1371/journal.ppat.1005110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Ethics declarations

The views expressed in this chapter reflect the results of research conducted by the author and do not necessarily reflect the official policy or position of the Department of the Navy, Department of Defense, the United States Government, nor the Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc.

This work was supported/funded by work unit number: A1436, DHP RDT&E supplemental COVID funding.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Balinsky, C., Jani, V., Sun, P., Williams, M., Defang, G., Porter, K.R. (2022). Pseudovirus-Based Assays for the Measurement of Antibody-Mediated Neutralization of SARS-CoV-2. In: Chu, J.J.H., Ahidjo, B.A., Mok, C.K. (eds) SARS-CoV-2. Methods in Molecular Biology, vol 2452. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2111-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2111-0_21

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2110-3

  • Online ISBN: 978-1-0716-2111-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics