Skip to main content

Deficits of Neurotransmitter Systems and Altered Brain Connectivity in Major Depression: A Translational Neuroscience Perspective

  • Protocol
  • First Online:
Translational Research Methods for Major Depressive Disorder

Part of the book series: Neuromethods ((NM,volume 179))

  • 617 Accesses

Abstract

Recent studies that examined brain characteristics for major depressive disorder (MDD) have reported deficient neurotransmitter system, altered brain morphology and patterns of white matter-based brain inter-regional connections, and differential brain inter-regional coherence of oscillatory patterns during resting and task performance status compared to healthy controls. For better understanding of the MDD pathophysiology that underlies clinical symptoms, the current review provides practical approaches of multimodal brain imaging encompassing the regional deficiency of neurotransmitter receptors or synaptic density to altered patterns of brain inter-regional connection or communication for MDD. First, to elucidate the deficits of neurotransmitter system in MDD, the current review illustrates how to acquire the brain molecular positron emission tomography (PET) images and estimate the synaptic density in addition to the binding potential (or receptor availabilities) of serotonergic (5-HT transporter and 5-HT1A autoreceptor), glutamatergic (metabotropic glutamate receptor 5), and dopaminergic (D2 receptor) system across the whole brain. Second, the current review demonstrates how to explore the possible associations between the regional deficits of neurotransmitter binding potential and altered resting-state functional connectivity [voxel-to-whole brain (intrinsic functional connectivity) or region-to-region (seed-based functional connectivity)], structural connectivity [brain white matter-based region-to-region structural connectivity, estimated using the probabilistic fiber tracking system], and directed functional connectivity [region-to-region] during task performance in MDD. Third, opened resources of software and pipelines that could be applied in running these analytical procedures are also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cowen PJ, Browning M (2015) What has serotonin to do with depression? World Psychiatry 14(2):158–160

    PubMed  PubMed Central  Google Scholar 

  2. Maier SF, Watkins LR (2005) Stressor controllability and learned helplessness: the roles of the dorsal raphe nucleus, serotonin, and corticotropin-releasing factor. Neurosci Biobehav Rev 29(4–5):829–841

    CAS  PubMed  Google Scholar 

  3. Ferrés-Coy A, Santana N, Castañé A et al (2013) Acute 5-HT1A autoreceptor knockdown increases antidepressant responses and serotonin release in stressful conditions. Psychopharmacology 225(1):61–74

    PubMed  Google Scholar 

  4. Savitz J, Lucki I, Drevets WC (2009) 5-HT(1A) receptor function in major depressive disorder. Prog Neurobiol 88(1):17–31

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Fisher PM, Meltzer CC, Ziolko SK et al (2006) Capacity for 5-HT1A-mediated autoregulation predicts amygdala reactivity. Nat Neurosci 9(11):1362–1363

    CAS  PubMed  Google Scholar 

  6. Selvaraj S, Mouchlianitis E, Faulkner P et al (2015) Presynaptic serotoninergic regulation of emotional processing: a multimodal brain imaging study. Biol Psychiatry 78(8):563–571

    CAS  PubMed  Google Scholar 

  7. Banerjee P, Mehta M, Kanjilal B (2007) Frontiers in neuroscience the 5-HT(1A) receptor: a signaling hub linked to emotional balance. In: Chattopadhyay A (ed) Serotonin receptors in neurobiology. CRC Press/Taylor & Francis, Boca Raton, FL

    Google Scholar 

  8. Milak MS, DeLorenzo C, Zanderigo F et al (2010) In vivo quantification of human serotonin 1A receptor using 11C-CUMI-101, an agonist PET radiotracer. J Nucl Med 51(12):1892–1900

    PubMed  Google Scholar 

  9. Krishnan V, Nestler EJ (2008) The molecular neurobiology of depression. Nature 455(7215):894–902

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Spies M, Knudsen GM, Lanzenberger R, Kasper S (2015) The serotonin transporter in psychiatric disorders: insights from PET imaging. Lancet Psychiatry 2(8):743–755

    PubMed  Google Scholar 

  11. Wilson AA, Ginovart N, Hussey D, Meyer J, Houle S (2002) In vitro and in vivo characterisation of [11C]-DASB: a probe for in vivo measurements of the serotonin transporter by positron emission tomography. Nucl Med Biol 29(5):509–515

    CAS  PubMed  Google Scholar 

  12. Sudhof TC (2004) The synaptic vesicle cycle. Annu Rev Neurosci 27:509–547

    PubMed  Google Scholar 

  13. Holmes SE, Scheinost D, Finnema SJ et al (2019) Lower synaptic density is associated with depression severity and network alterations. Nat Commun 10(1):1529

    PubMed  PubMed Central  Google Scholar 

  14. Finnema SJ, Nabulsi NB, Mercier J et al (2018) Kinetic evaluation and test-retest reproducibility of [(11)C]UCB-J, a novel radioligand for positron emission tomography imaging of synaptic vesicle glycoprotein 2A in humans. J Cereb Blood Flow Metab 38(11):2041–2052

    CAS  PubMed  Google Scholar 

  15. Bajjalieh SM, Frantz GD, Weimann JM, McConnell SK, Scheller RH (1994) Differential expression of synaptic vesicle protein 2 (SV2) isoforms. J Neurosci 14(9):5223–5235

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Nabulsi NB, Mercier J, Holden D et al (2016) Synthesis and preclinical evaluation of 11C-UCB-J as a PET tracer for imaging the synaptic vesicle glycoprotein 2A in the brain. J Nucl Med 57(5):777–784

    CAS  PubMed  Google Scholar 

  17. Sanacora G, Treccani G, Popoli M (2012) Towards a glutamate hypothesis of depression: an emerging frontier of neuropsychopharmacology for mood disorders. Neuropharmacology 62(1):63–77

    CAS  PubMed  Google Scholar 

  18. Kokane SS, Armant RJ, Bolaños-Guzmán CA, Perrotti LI (2020) Overlap in the neural circuitry and molecular mechanisms underlying ketamine abuse and its use as an antidepressant. Behav Brain Res 384:112548

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Ng TH, Alloy LB, Smith DV (2019) Meta-analysis of reward processing in major depressive disorder reveals distinct abnormalities within the reward circuit. Transl Psychiatry 9(1):293

    PubMed  PubMed Central  Google Scholar 

  20. Kringelbach ML, Cruzat J, Cabral J et al (2020) Dynamic coupling of whole-brain neuronal and neurotransmitter systems. Proc Natl Acad Sci U S A 117(17):9566–9576

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Duman RS, Sanacora G, Krystal JH (2019) Altered connectivity in depression: GABA and glutamate neurotransmitter deficits and reversal by novel treatments. Neuron 102(1):75–90

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Scott J, Hidalgo-Mazzei D, Strawbridge R et al (2019) Prospective cohort study of early biosignatures of response to lithium in bipolar-I-disorders: overview of the H2020-funded R-LiNK initiative. Int J Bipolar Disord 7(1):20

    PubMed  PubMed Central  Google Scholar 

  23. Parsey RV, Ogden RT, Miller JM et al (2010) Higher serotonin 1A binding in a second major depression cohort: modeling and reference region considerations. Biol Psychiatry 68(2):170–178

    CAS  PubMed  PubMed Central  Google Scholar 

  24. DeLorenzo C, Kumar JS, Mann JJ, Parsey RV (2011) In vivo variation in metabotropic glutamate receptor subtype 5 binding using positron emission tomography and [11C]ABP688. J Cereb Blood Flow Metab 31(11):2169–2180

    CAS  PubMed  PubMed Central  Google Scholar 

  25. DeLorenzo C, Gallezot JD, Gardus J et al (2017) In vivo variation in same-day estimates of metabotropic glutamate receptor subtype 5 binding using [(11)C]ABP688 and [(18)F]FPEB. J Cereb Blood Flow Metab 37(8):2716–2727

    CAS  PubMed  Google Scholar 

  26. Schneck N, Tu T, Falcone HR et al (2020) Large-scale network dynamics in neural response to emotionally negative stimuli linked to serotonin 1A binding in major depressive disorder. Mol Psychiatry 26:2393. https://doi.org/10.1038/s41380-020-0733-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hamilton JP, Sacchet MD, Hjørnevik T et al (2018) Striatal dopamine deficits predict reductions in striatal functional connectivity in major depression: a concurrent (11)C-raclopride positron emission tomography and functional magnetic resonance imaging investigation. Transl Psychiatry 8(1):264

    PubMed  PubMed Central  Google Scholar 

  28. Kumar JS, Prabhakaran J, Majo VJ et al (2007) Synthesis and in vivo evaluation of a novel 5-HT1A receptor agonist radioligand [O-methyl- 11C]2-(4-(4-(2-methoxyphenyl)piperazin-1-yl)butyl)-4-methyl-1,2,4-triazine-3,5(2H,4H)dione in nonhuman primates. Eur J Nucl Med Mol Imaging 34(7):1050–1060

    CAS  PubMed  Google Scholar 

  29. Ametamey SM, Kessler LJ, Honer M et al (2006) Radiosynthesis and preclinical evaluation of 11C-ABP688 as a probe for imaging the metabotropic glutamate receptor subtype 5. J Nucl Med 47(4):698–705

    CAS  PubMed  Google Scholar 

  30. Langer O, Någren K, Dolle F et al (1999) Precursor synthesis and radiolabelling of the dopamine D2 receptor ligand [11C]raclopride from [11C]methyl triflate. J Label Compd Radiopharm 42(12):1183–1193

    CAS  Google Scholar 

  31. Rahmim A, Cheng JC, Blinder S, Camborde ML, Sossi V (2005) Statistical dynamic image reconstruction in state-of-the-art high-resolution PET. Phys Med Biol 50(20):4887–4912

    PubMed  Google Scholar 

  32. Schneier FR, Slifstein M, Whitton AE et al (2018) Dopamine release in antidepressant-naive major depressive disorder: a multimodal [(11)C]-(+)-PHNO positron emission tomography and functional magnetic resonance imaging study. Biol Psychiatry 84(8):563–573

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Pillai RLI, Malhotra A, Rupert DD et al (2018) Relations between cortical thickness, serotonin 1A receptor binding, and structural connectivity: a multimodal imaging study. Hum Brain Mapp 39(2):1043–1055

    PubMed  Google Scholar 

  34. Smith GS, Kuwabara H, Gould NF et al (2021) Molecular imaging of the serotonin transporter availability and occupancy by antidepressant treatment in late-life depression. Neuropharmacology 194:108447. https://doi.org/10.1016/j.neuropharm.2021.108447

    Article  CAS  PubMed  Google Scholar 

  35. Finnema SJ, Nabulsi NB, Eid T et al (2016) Imaging synaptic density in the living human brain. Sci Transl Med 8(348):348–396

    Google Scholar 

  36. Jenkinson M, Smith S (2001) A global optimisation method for robust affine registration of brain images. Med Image Anal 5(2):143–156

    CAS  PubMed  Google Scholar 

  37. DeLorenzo C, Klein A, Mikhno A et al (2009) A new method for assessing PET-MRI coregistration. Paper presented at the SPIE Medical Imaging, Florida, USA

    Google Scholar 

  38. Smith SM (2002) Fast robust automated brain extraction. Hum Brain Mapp 17(3):143–155

    PubMed  PubMed Central  Google Scholar 

  39. Ashburner J, Friston KJ (2005) Unified segmentation. NeuroImage 26(3):839–851

    PubMed  Google Scholar 

  40. Holmes CJ, Hoge R, Collins L, Woods R, Toga AW, Evans AC (1998) Enhancement of MR images using registration for signal averaging. J Comput Assist Tomogr 22(2):324–333

    CAS  PubMed  Google Scholar 

  41. Ashburner J (2007) A fast diffeomorphic image registration algorithm. NeuroImage 38(1):95–113

    PubMed  Google Scholar 

  42. Desikan RS, Ségonne F, Fischl B et al (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage 31(3):968–980

    PubMed  Google Scholar 

  43. Delorenzo C, Delaparte L, Thapa-Chhetry B, Miller J, Mann J, Parsey RV (2013) Prediction of selective serotonin reuptake inhibitor response using diffusion-weighted MRI. Front Psychiatry 4:5

    PubMed  PubMed Central  Google Scholar 

  44. Hirvonen J, Kajander J, Allonen T, Oikonen V, Någren K, Hietala J (2007) Measurement of serotonin 5-HT1A receptor binding using positron emission tomography and [carbonyl-(11)C]WAY-100635-considerations on the validity of cerebellum as a reference region. J Cereb Blood Flow Metab 27(1):185–195

    CAS  PubMed  Google Scholar 

  45. Parsey RV, Arango V, Olvet DM, Oquendo MA, Van Heertum RL, John Mann J (2005) Regional heterogeneity of 5-HT1A receptors in human cerebellum as assessed by positron emission tomography. J Cereb Blood Flow Metab 25(7):785–793

    CAS  PubMed  Google Scholar 

  46. DeLorenzo C, Sovago J, Gardus J et al (2015) Characterization of brain mGluR5 binding in a pilot study of late-life major depressive disorder using positron emission tomography and [11C]ABP688. Transl Psychiatry 5(12):e693

    CAS  PubMed  PubMed Central  Google Scholar 

  47. DuBois JM, Rousset OG, Rowley J et al (2016) Characterization of age/sex and the regional distribution of mGluR5 availability in the healthy human brain measured by high-resolution [(11)C]ABP688 PET. Eur J Nucl Med Mol Imaging 43(1):152–162

    CAS  PubMed  Google Scholar 

  48. Innis RB, Cunningham VJ, Delforge J et al (2007) Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab 27(9):1533–1539

    CAS  PubMed  Google Scholar 

  49. Lammertsma AA, Hume SP (1996) Simplified reference tissue model for PET receptor studies. NeuroImage 4(3 Pt 1):153–158

    CAS  PubMed  Google Scholar 

  50. Wu Y, Carson RE (2002) Noise reduction in the simplified reference tissue model for neuroreceptor functional imaging. J Cereb Blood Flow Metab 22(12):1440–1452

    PubMed  Google Scholar 

  51. Parsey RV, Slifstein M, Hwang DR et al (2000) Validation and reproducibility of measurement of 5-HT1A receptor parameters with [carbonyl-11C]WAY-100635 in humans: comparison of arterial and reference tissue input functions. J Cereb Blood Flow Metab 20(7):1111–1133

    CAS  PubMed  Google Scholar 

  52. Alpert NM, Badgaiyan RD, Livni E, Fischman AJ (2003) A novel method for noninvasive detection of neuromodulatory changes in specific neurotransmitter systems. NeuroImage 19(3):1049–1060

    PubMed  Google Scholar 

  53. Liu Z, Wang Y, Gerig G et al (2010) Quality control of diffusion weighted images. Proc SPIE Int Soc Opt Eng 7628:76280j

    PubMed Central  Google Scholar 

  54. Behrens TE, Berg HJ, Jbabdi S, Rushworth MF, Woolrich MW (2007) Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? NeuroImage 34(1):144–155

    CAS  PubMed  Google Scholar 

  55. Drysdale AT, Grosenick L, Downar J et al (2017) Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nat Med 23(1):28–38

    CAS  PubMed  Google Scholar 

  56. Whitfield-Gabrieli S, Nieto-Castanon A (2012) Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect 2(3):125–141

    PubMed  Google Scholar 

  57. Behzadi Y, Restom K, Liau J, Liu TT (2007) A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. NeuroImage 37(1):90–101

    PubMed  Google Scholar 

  58. Jenkinson M, Bannister P, Brady M, Smith S (2002) Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage 17(2):825–841

    PubMed  Google Scholar 

  59. Andersson JLR, Jenkinson M, Smith S (2007) Non-linear registration, aka Spatial normalisation. FMRIB technical report TR07JA2. FMRIB Centre, Oxford

    Google Scholar 

  60. Kim JH, Joo YH, Son YD et al (2019) In vivo metabotropic glutamate receptor 5 availability-associated functional connectivity alterations in drug-naïve young adults with major depression. Eur Neuropsychopharmacol 29(2):278–290

    CAS  PubMed  Google Scholar 

  61. Thomas BA, Cuplov V, Bousse A et al (2016) PETPVC: a toolbox for performing partial volume correction techniques in positron emission tomography. Phys Med Biol 61(22):7975–7993

    PubMed  Google Scholar 

  62. Greve DN, Salat DH, Bowen SL et al (2016) Different partial volume correction methods lead to different conclusions: an (18)F-FDG-PET study of aging. NeuroImage 132:334–343

    PubMed  Google Scholar 

  63. Nørgaard M, Ganz M, Svarer C et al (2019) Optimization of preprocessing strategies in Positron Emission Tomography (PET) neuroimaging: a [(11)C]DASB PET study. NeuroImage 199:466–479

    PubMed  Google Scholar 

  64. Marcoux A, Burgos N, Bertrand A et al (2018) An automated pipeline for the analysis of PET data on the cortical surface. Front Neuroinform 12:94

    PubMed  PubMed Central  Google Scholar 

  65. Tjerkaski J, Cervenka S, Farde L, Matheson GJ (2020) Kinfitr - an open-source tool for reproducible PET modelling: validation and evaluation of test-retest reliability. EJNMMI Res 10(1):77

    PubMed  PubMed Central  Google Scholar 

  66. López-González FJ, Paredes-Pacheco J, Thurnhofer-Hemsi K et al (2019) QModeling: a multiplatform, easy-to-use and open-source toolbox for PET kinetic analysis. Neuroinformatics 17(1):103–114

    PubMed  Google Scholar 

  67. Funck T, Larcher K, Toussaint PJ, Evans AC, Thiel A (2018) APPIAN: automated pipeline for PET image analysis. Front Neuroinform 12:64

    PubMed  PubMed Central  Google Scholar 

  68. Muzic RF Jr, Cornelius S (2001) COMKAT: compartment model kinetic analysis tool. J Nucl Med 42(4):636–645

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was funded by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1B03028464).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Je-Yeon Yun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yun, JY., Kim, YK. (2022). Deficits of Neurotransmitter Systems and Altered Brain Connectivity in Major Depression: A Translational Neuroscience Perspective. In: Kim, YK., Amidfar, M. (eds) Translational Research Methods for Major Depressive Disorder. Neuromethods, vol 179. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2083-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2083-0_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2082-3

  • Online ISBN: 978-1-0716-2083-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics