Skip to main content

Detection of Norovirus Using Paper-Based Cell-Free Systems

  • Protocol
  • First Online:
Cell-Free Gene Expression

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2433))

  • 2300 Accesses

Abstract

Norovirus infections are the leading cause of foodborne illness and human gastroenteritis, afflicting hundreds of millions of people each year. Molecular assays with the capacity to detect norovirus without expensive equipment and with high sensitivity and specificity represent useful tools to track and contain future outbreaks. Here we describe how norovirus can be detected in low-cost paper-based cell-free reactions. These assays combine freeze-dried, thermostable cell-free transcription-translation reactions with toehold switch riboregulators designed to target the norovirus genome, enabling convenient colorimetric assay readouts. Coupling cell-free reactions with synbody-based viral enrichment and isothermal amplification enables detection of norovirus from clinical samples down to concentrations as low as 270 zM. These diagnostic tests are promising assays for confronting norovirus outbreaks and can be adapted to a variety of other human pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bartsch SM, Lopman BA, Ozawa S et al (2016) Global economic burden of norovirus gastroenteritis. PLoS One 11:e0151219. https://doi.org/10.1371/journal.pone.0151219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Siebenga JJ, Vennema H, Zheng DP et al (2009) Norovirus illness is a global problem: emergence and spread of norovirus gii.4 variants, 2001–2007. J Infect Dis 200:802–812. https://doi.org/10.1086/605127

    Article  PubMed  Google Scholar 

  3. Ambert-Balay K, Pothier P (2013) Evaluation of 4 immunochromatographic tests for rapid detection of norovirus in faecal samples. J Clin Virol 56:278–282. https://doi.org/10.1016/j.jcv.2012.11.001

    Article  CAS  Google Scholar 

  4. Vyas K, Atkinson C, Clark DA, Irish D (2015) Comparison of five commercially available immunochromatographic tests for the detection of norovirus in faecal specimens. J Hosp Infect 91:176–178. https://doi.org/10.1016/j.jhin.2015.06.013

    Article  CAS  PubMed  Google Scholar 

  5. Henningsson AJ, Nilsson Bowers A, Nordgren J et al (2017) Rapid diagnosis of acute norovirus-associated gastroenteritis: evaluation of the Xpert Norovirus assay and its implementation as a 24/7 service in three hospitals in Jönköping County, Sweden. Eur J Clin Microbiol Infect Dis 36:1867–1871. https://doi.org/10.1007/s10096-017-3005-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Green AA, Silver PA, Collins JJ, Yin P (2014) Toehold switches: de-novo-designed regulators of gene expression. Cell 159:925–939. https://doi.org/10.1016/j.cell.2014.10.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ma D, Shen L, Wu K et al (2018) Low-cost detection of norovirus using paper-based cell-free systems and synbody-based viral enrichment. Synth Biol 3. https://doi.org/10.1093/SYNBIO/YSY018

  8. Green AA, Kim J, Ma D et al (2017) Complex cellular logic computation using ribocomputing devices. Nature 548:117–121. https://doi.org/10.1038/nature23271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pardee K, Green AA, Ferrante T et al (2014) Paper-based synthetic gene networks. Cell 159:940–954. https://doi.org/10.1016/j.cell.2014.10.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pardee K, Green AA, Takahashi MK et al (2016) Rapid, low-cost detection of zika virus using programmable biomolecular components. Cell 165:1255–1266. https://doi.org/10.1016/j.cell.2016.04.059

    Article  CAS  PubMed  Google Scholar 

  11. Amalfitano E, Karlikow M, Norouzi M et al (2021) A glucose meter interface for point-of-care gene circuit-based diagnostics. Nat Commun 12:724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kim J, Zhou Y, Carlson PD et al (2019) De novo-designed translation-repressing riboregulators for multi-input cellular logic. Nat Chem Biol 15:1173–1182. https://doi.org/10.1038/s41589-019-0388-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hong F, Ma D, Wu K et al (2020) Precise and programmable detection of mutations using ultraspecific riboregulators. Cell 180:1018–1032.e16. https://doi.org/10.1016/j.cell.2020.02.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Takahashi MK, Tan X, Dy AJ et al (2018) A low-cost paper-based synthetic biology platform for analyzing gut microbiota and host biomarkers. Nat Commun 9:1–12. https://doi.org/10.1038/s41467-018-05864-4

    Article  CAS  Google Scholar 

  15. Gibson DG, Young L, Chuang RY et al (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345. https://doi.org/10.1038/nmeth.1318

    Article  CAS  PubMed  Google Scholar 

  16. Gupta N, Lainson JC, Belcher PE et al (2017) Cross-reactive synbody affinity ligands for capturing diverse noroviruses. Anal Chem 89:7174–7181. https://doi.org/10.1021/acs.analchem.7b01337

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander A. Green .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wu, K., Green, A.A. (2022). Detection of Norovirus Using Paper-Based Cell-Free Systems. In: Karim, A.S., Jewett, M.C. (eds) Cell-Free Gene Expression. Methods in Molecular Biology, vol 2433. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1998-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1998-8_23

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1997-1

  • Online ISBN: 978-1-0716-1998-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics