Skip to main content

Best Practices for DNA Template Preparation Toward Improved Reproducibility in Cell-Free Protein Production

  • Protocol
  • First Online:
Cell-Free Gene Expression

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2433))

Abstract

Performance variability is a common challenge in cell-free protein production and hinders a wider adoption of these systems for both research and biomanufacturing. While the inherent stochasticity and complexity of biology likely contributes to variability, other systematic factors may also play a role, including the source and preparation of the cell extract, the composition of the supplemental reaction buffer, the facility at which experiments are conducted, and the human operator (Cole et al. ACS Synth Biol 8:2080–2091, 2019). Variability in protein production could also arise from differences in the DNA template—specifically the amount of functional DNA added to a cell-free reaction and the quality of the DNA preparation in terms of contaminants and strand breakage. Here, we present protocols and suggest best practices optimized for DNA template preparation and quantitation for cell-free systems toward reducing variability in cell-free protein production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pardee K, Slomovic S, Nguyen PQ, Lee JW, Donghia N, Burrill D, Ferrante T, McSorley FR, Furuta Y, Vernet A, Lewandowski M, Boddy CN, Joshi NS, Collins JJ (2016) Portable, on-demand biomolecular manufacturing. Cell 167(1):248–259. e212. https://doi.org/10.1016/j.cell.2016.09.013

    Article  CAS  PubMed  Google Scholar 

  2. Garenne D, Noireaux V (2018) Cell-free transcription-translation: engineering biology from the nanometer to the millimeter scale. Curr Opin Biotechnol 58:19–27. https://doi.org/10.1016/j.copbio.2018.10.007

    Article  CAS  PubMed  Google Scholar 

  3. Hunt JP, Yang SO, Wilding KM, Bundy BC (2017) The growing impact of lyophilized cell-free protein expression systems. Bioengineered 8(4):325–330. https://doi.org/10.1080/21655979.2016.1241925

    Article  CAS  PubMed  Google Scholar 

  4. Liu W-Q, Zhang L, Chen M, Li J (2019) Cell-free protein synthesis: recent advances in bacterial extract sources and expanded applications. Biochem Eng J 141:182–189. https://doi.org/10.1016/j.bej.2018.10.023

    Article  CAS  Google Scholar 

  5. Ogonah OW, Polizzi KM, Bracewell DG (2017) Cell free protein synthesis: a viable option for stratified medicines manufacturing? Curr Opin Chem Eng 18:77–83. https://doi.org/10.1016/j.coche.2017.10.003

    Article  Google Scholar 

  6. Vilkhovoy M, Adhikari A, Vadhin S, Varner JD (2020) The evolution of cell free biomanufacturing. Processes 8(6):675. https://doi.org/10.3390/pr8060675

    Article  CAS  Google Scholar 

  7. Adiga R, Al-Adhami M, Andar A, Borhani S, Brown S, Burgenson D, Cooper MA, Deldari S, Frey DD, Ge X, Guo H, Gurramkonda C, Jensen P, Kostov Y, LaCourse W, Liu Y, Moreira A, Mupparapu K, Penalber-Johnstone C, Pilli M, Punshon-Smith B, Rao A, Rao G, Rauniyar P, Snovida S, Taurani K, Tilahun D, Tolosa L, Tolosa M, Tran K, Vattem K, Veeraraghavan S, Wagner B, Wilhide J, Wood DW, Zuber A (2018) Point-of-care production of therapeutic proteins of good-manufacturing-practice quality. Nat Biomed Eng 2(9):675–686. https://doi.org/10.1038/s41551-018-0259-1

    Article  CAS  PubMed  Google Scholar 

  8. Karig DK, Bessling S, Thielen P, Zhang S, Wolfe J (2017) Preservation of protein expression systems at elevated temperatures for portable therapeutic production. J R Soc Interface 14(129):20161039. https://doi.org/10.1098/rsif.2016.1039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Timm AC, Shankles PG, Foster CM, Doktycz MJ, Retterer ST (2016) Toward microfluidic reactors for cell-free protein synthesis at the point-of-care. Small 12(6):810–817. https://doi.org/10.1002/smll.201502764

    Article  CAS  PubMed  Google Scholar 

  10. Martin RW, Majewska NI, Chen CX, Albanetti TE, Jimenez RBC, Schmelzer AE, Jewett MC, Roy V (2017) Development of a CHO-based cell-free platform for synthesis of active monoclonal antibodies. ACS Synth Biol 6(7):1370–1379. https://doi.org/10.1021/acssynbio.7b00001

    Article  CAS  PubMed  Google Scholar 

  11. Min SE, Lee KH, Park SW, Yoo TH, Oh CH, Park JH, Yang SY, Kim YS, Kim DM (2016) Cell-free production and streamlined assay of cytosol-penetrating antibodies. Biotechnol Bioeng 113(10):2107–2112. https://doi.org/10.1002/bit.25985

    Article  CAS  PubMed  Google Scholar 

  12. Stech M, Kubick S (2015) Cell-free synthesis meets antibody production: a review. Antibodies 4(1):12–33. https://doi.org/10.3390/antib4010012

    Article  Google Scholar 

  13. Xu Y, Lee J, Tran C, Heibeck TH, Wang WD, Yang J, Stafford RL, Steiner AR, Sato AK, Hallam TJ, Yin G (2015) Production of bispecific antibodies in "knobs-into-holes" using a cell-free expression system. MAbs 7(1):231–242. https://doi.org/10.4161/19420862.2015.989013

    Article  CAS  PubMed  Google Scholar 

  14. Xu Z, Chen H, Yin X, Xu N, Cen P (2005) High-level expression of soluble human β-Defensin-2 fused with Green fluorescent protein in Escherichia coli cell-free system. Appl Biochem Biotechnol 127:53–61

    Article  CAS  PubMed  Google Scholar 

  15. Thangavelu U, Arumugam DI, Takashima E, Tachibana M, Ishino T, Torii M, Tsuboi T (2014) Application of wheat germ cell-free protein expression system for novel malaria vaccine candidate discovery. Expert Rev Vaccines 13(1):75–85

    Article  Google Scholar 

  16. Welsh JP, Lu Y, He XS, Greenberg HB, Swartz JR (2012) Cell-free production of trimeric influenza hemagglutinin head domain proteins as vaccine antigens. Biotechnol Bioeng 109(12):2962–2969. https://doi.org/10.1002/bit.24581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yang J, Kanter G, Voloshin A, Michel-Reydellet N, Velkeen H, Levy R, Swartz JR (2005) Rapid expression of vaccine proteins for B-cell lymphoma in a cell-free system. Biotechnol Bioeng 89(5):503–511. https://doi.org/10.1002/bit.20283

    Article  CAS  PubMed  Google Scholar 

  18. Kanter G, Yang J, Voloshin A, Levy S, Swartz JR, Levy R (2007) Cell-free production of scFv fusion proteins: an efficient approach for personalized lymphoma vaccines. Blood 109(8):3393–3399. https://doi.org/10.1182/blood-2006-07-030593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chappell J, Jensen K, Freemont PS (2013) Validation of an entirely in vitro approach for rapid prototyping of DNA regulatory elements for synthetic biology. Nucleic Acids Res 41(5):3471–3481. https://doi.org/10.1093/nar/gkt052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chappell J, Watters KE, Takahashi MK, Lucks JB (2015) A renaissance in RNA synthetic biology: new mechanisms, applications and tools for the future. Curr Opin Chem Biol 28:47–56. https://doi.org/10.1016/j.cbpa.2015.05.018

    Article  CAS  PubMed  Google Scholar 

  21. Chappell J, Westbrook A, Verosloff M, Lucks JB (2017) Computational design of small transcription activating RNAs for versatile and dynamic gene regulation. Nat Commun 8(1):1051. https://doi.org/10.1038/s41467-017-01082-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hu CY, Varner JD, Lucks JB (2015) Generating effective models and parameters for RNA genetic circuits. ACS Synth Biol 4(8):914–926. https://doi.org/10.1021/acssynbio.5b00077

    Article  CAS  PubMed  Google Scholar 

  23. Karim AS, Jewett MC (2016) A cell-free framework for rapid biosynthetic pathway prototyping and enzyme discovery. Metab Eng 36:116–126. https://doi.org/10.1016/j.ymben.2016.03.002

    Article  CAS  PubMed  Google Scholar 

  24. Karzbrun E, Tayar AM, Noireaux V, Bar-Ziv RH (2014) Synthetic biology. Programmable on-chip DNA compartments as artificial cells. Science 345(6198):829–832. https://doi.org/10.1126/science.1255550

    Article  CAS  PubMed  Google Scholar 

  25. Niederholtmeyer H, Sun ZZ, Hori Y, Yeung E, Verpoorte A, Murray RM, Maerkl SJ (2015) Rapid cell-free forward engineering of novel genetic ring oscillators. Elife 4:e09771. https://doi.org/10.7554/eLife.09771

    Article  PubMed  PubMed Central  Google Scholar 

  26. Takahashi MK, Chappell J, Hayes CA, Sun ZZ, Kim J, Singhal V, Spring KJ, Al-Khabouri S, Fall CP, Noireaux V, Murray RM, Lucks JB (2015) Rapidly characterizing the fast dynamics of RNA genetic circuitry with cell-free transcription-translation (TX-TL) systems. ACS Synth Biol 4(5):503–515. https://doi.org/10.1021/sb400206c

    Article  CAS  PubMed  Google Scholar 

  27. Chemla Y, Ozer E, Schlesinger O, Noireaux V, Alfonta L (2015) Genetically expanded cell-free protein synthesis using endogenous pyrrolysyl orthogonal translation system. Biotechnol Bioeng 112(8):1663–1672. https://doi.org/10.1002/bit.25587

    Article  CAS  PubMed  Google Scholar 

  28. Garamella J, Marshall R, Rustad M, Noireaux V (2016) The all E. coli TX-TL toolbox 2.0: a platform for cell-free synthetic biology. ACS Synth Biol 5(4):344–355. https://doi.org/10.1021/acssynbio.5b00296

    Article  CAS  PubMed  Google Scholar 

  29. Iwane Y, Hitomi A, Murakami H, Katoh T, Goto Y, Suga H (2016) Expanding the amino acid repertoire of ribosomal polypeptide synthesis via the artificial division of codon boxes. Nat Chem 8(4):317–325. https://doi.org/10.1038/nchem.2446

    Article  CAS  PubMed  Google Scholar 

  30. Marshall R, Maxwell CS, Collins SP, Jacobsen T, Luo ML, Begemann MB, Gray BN, January E, Singer A, He Y, Beisel CL, Noireaux V (2018) Rapid and scalable characterization of CRISPR technologies using an E. coli cell-free transcription-translation system. Mol Cell 69(1):146–157. e143. https://doi.org/10.1016/j.molcel.2017.12.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Maxwell CS, Jacobsen T, Marshall R, Noireaux V, Beisel CL (2018) A detailed cell-free transcription-translation-based assay to decipher CRISPR protospacer-adjacent motifs. Methods 143:48–57. https://doi.org/10.1016/j.ymeth.2018.02.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hong SH, Ntai I, Haimovich AD, Kelleher NL, Isaacs FJ, Jewett MC (2014) Cell-free protein synthesis from a release factor 1 deficient Escherichia coli activates efficient and multiple site-specific nonstandard amino acid incorporation. ACS Synth Biol 3(6):398–409. https://doi.org/10.1021/sb400140t

    Article  CAS  PubMed  Google Scholar 

  33. Martin RW, Des Soye BJ, Kwon YC, Kay J, Davis RG, Thomas PM, Majewska NI, Chen CX, Marcum RD, Weiss MG, Stoddart AE, Amiram M, Ranji Charna AK, Patel JR, Isaacs FJ, Kelleher NL, Hong SH, Jewett MC (2018) Cell-free protein synthesis from genomically recoded bacteria enables multisite incorporation of noncanonical amino acids. Nat Commun 9(1):1203. https://doi.org/10.1038/s41467-018-03469-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hong SH, Kwon YC, Martin RW, Des Soye BJ, de Paz AM, Swonger KN, Ntai I, Kelleher NL, Jewett MC (2015) Improving cell-free protein synthesis through genome engineering of Escherichia coli lacking release factor 1. Chembiochem 16(5):844–853. https://doi.org/10.1002/cbic.201402708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pardee K, Green AA, Takahashi MK, Braff D, Lambert G, Lee JW, Ferrante T, Ma D, Donghia N, Fan M, Daringer NM, Bosch I, Dudley DM, O’Connor DH, Gehrke L, Collins JJ (2016) Rapid, low-cost detection of Zika virus using programmable biomolecular components. Cell 165(5):1255–1266. https://doi.org/10.1016/j.cell.2016.04.059

    Article  CAS  PubMed  Google Scholar 

  36. Sen S, Apurva D, Satija R, Siegal D, Murray RM (2017) Design of a Toolbox of RNA thermometers. ACS Synth Biol 6(8):1461–1470. https://doi.org/10.1021/acssynbio.6b00301

    Article  CAS  PubMed  Google Scholar 

  37. Silverman AD, Akova U, Alam KK, Jewett MC, Lucks JB (2020) Design and optimization of a cell-free atrazine biosensor. ACS Synth Biol 9(3):671–677. https://doi.org/10.1021/acssynbio.9b00388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Slomovic S, Pardee K, Collins JJ (2015) Synthetic biology devices for in vitro and in vivo diagnostics. Proc Natl Acad Sci U S A 112(47):14429–14435. https://doi.org/10.1073/pnas.1508521112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cole SD, Beabout K, Turner KB, Smith ZK, Funk VL, Harbaugh SV, Liem AT, Roth PA, Geier BA, Emanuel PA, Walper SA, Chavez JL, Lux MW (2019) Quantification of Interlaboratory cell-free protein synthesis variability. ACS Synth Biol 8(9):2080–2091. https://doi.org/10.1021/acssynbio.9b00178

    Article  CAS  PubMed  Google Scholar 

  40. Marshall R, Maxwell CS, Collins SP, Beisel CL, Noireaux V (2017) Short DNA containing chi sites enhances DNA stability and gene expression in E. coli cell-free transcription-translation systems. Biotechnol Bioeng 114(9):2137–2141. https://doi.org/10.1002/bit.26333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sun ZZ, Yeung E, Hayes CA, Noireaux V, Murray RM (2014) Linear DNA for rapid prototyping of synthetic biological circuits in an Escherichia coli based TX-TL cell-free system. ACS Synth Biol 3(6):387–397. https://doi.org/10.1021/sb400131a

    Article  CAS  PubMed  Google Scholar 

  42. Li J, Wang H, Kwon YC, Jewett MC (2017) Establishing a high yielding streptomyces-based cell-free protein synthesis system. Biotechnol Bioeng 114(6):1343–1353. https://doi.org/10.1002/bit.26253

    Article  CAS  PubMed  Google Scholar 

  43. Jackson K, Kanamori T, Ueda T, Fan ZH (2014) Protein synthesis yield increased 72 times in the cell-free PURE system. Integr Biol 6(8):781–788. https://doi.org/10.1039/c4ib00088a

    Article  CAS  Google Scholar 

  44. Kuruma Y, Ueda T (2015) The PURE system for the cell-free synthesis of membrane proteins. Nat Protoc 10(9):1328–1344. https://doi.org/10.1038/nprot.2015.082

    Article  CAS  PubMed  Google Scholar 

  45. Romantseva E, Strychalski EA (2020) CELL-FREE (comparable engineered living lysates for research education and entrepreneurship) workshop report. NIST Special Publication (SP). National Institute of Standards and Technology, Gaithersburg, Maryland. https://doi.org/10.6028/nist.Sp.1500-13

    Book  Google Scholar 

  46. Ali N, Rampazzo RCP, Costa ADT, Krieger MA (2017) Current nucleic acid extraction methods and their implications to point-of-care diagnostics. Biomed Res Int 2017:9306564. https://doi.org/10.1155/2017/9306564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Marshall R, Noireaux V (2018) Synthetic biology with an all E. coli TXTL system: quantitative characterization of regulatory elements and gene circuits. Methods Mol Biol 1772:61–93

    Article  CAS  PubMed  Google Scholar 

  48. Shin J, Noireaux V (2010) Efficient cell-free expression with the endogenous E. coli RNA polymerase and sigma factor 70. J Biol Eng 4(9). https://doi.org/10.1186/1754-1611-4-8

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugenia F. Romantseva .

Editor information

Editors and Affiliations

1 Electronic Supplementary Materials

Supplementary File 1

Excel template for building a 6-point eGFP calibration curve. The volumes of eGFP and 1× PBS are determined from the measured concentration of the stock recombinant eGFP for triplicate measurements of the calibration curve in three locations in a 384-well plate. (XLSX 12 kb)

Supplementary File 2

Excel template for assembling cell-free reactions. The volumes of DNA and nuclease-free water are determined based on the measured concentration of the prepared solution of DNA and the minimal recommended DNA concentration of 5 nmol/L per sample, for triplicate measurements of each cell-free reaction in a 384-well plate. (XLSX 13 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Romantseva, E.F., Tack, D.S., Alperovich, N., Ross, D., Strychalski, E.A. (2022). Best Practices for DNA Template Preparation Toward Improved Reproducibility in Cell-Free Protein Production. In: Karim, A.S., Jewett, M.C. (eds) Cell-Free Gene Expression. Methods in Molecular Biology, vol 2433. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1998-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1998-8_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1997-1

  • Online ISBN: 978-1-0716-1998-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics