Skip to main content

The Giant Axon of the Squid: A Simple System for Axonal Transport Studies

  • Protocol
  • First Online:
Axonal Transport

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2431))

Abstract

The squid giant axon has a long history of being a superb experimental system in which to investigate a wide range of questions concerning intracellular transport. In this protocol we describe the method used for dissecting the axon to preserve its viability in vitro, and the technique for injecting exogenous materials into the living axon. Now that the squid genome is emerging, and the CRISPR/cas9 system has been successfully applied to knock-out squid genes, the giant axon will resume its place in the scientific pantheon of powerful experimental systems in which to address biological questions pertaining to all eukaryotes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hodgkin A, Huxley A (1952) A quantitative description of membrain current and its application to conduction and excitation in nerve. J Physol 117:500–544

    CAS  Google Scholar 

  2. Allen RD, Metuzals J, Tasaki I, Brady ST, Gilbert SP (1982) Fast axonal transport in squid giant axon. Science 218(4577):1127–1129

    Article  CAS  Google Scholar 

  3. Brady ST, Lasek RJ, Allen RD (1982) Fast axonal transport in extruded axoplasm from squid giant axon. Science 218(4577):1129–1131

    Article  CAS  Google Scholar 

  4. Vale RD, Schnapp BJ, Reese TS, Sheetz MP (1985) Movement of organelles along filaments dissociated from the axoplasm of the squid giant axon. Cell 40(2):449–454. https://doi.org/10.1016/0092-8674(85)90159-X. [pii]

    Article  CAS  PubMed  Google Scholar 

  5. DeGiorgis JA, Cavaliere KR, Burbach JPH (2011) Identification of molecular motors in the Woods Hole squid, Loligo pealei: an expressed sequence tag approach. Cytoskeleton 68(10):566–577. https://doi.org/10.1002/cm.20531

    Article  CAS  PubMed  Google Scholar 

  6. DeGiorgis JA, Petukhova TA, Evans TA, Reese TS (2008) Kinesin-3 is an organelle motor in the squid giant axon. Traffic 9(11):1867–1877. https://doi.org/10.1111/j.1600-0854.2008.00809.x

    Article  CAS  PubMed  Google Scholar 

  7. Bearer EL, Breakefield XO, Schuback D, Reese TS, LaVail JH (2000) Retrograde axonal transport of herpes simplex virus: evidence for a single mechanism and a role for tegument. Proc Natl Acad Sci U S A 97(14):8146–8150. https://doi.org/10.1073/pnas.97.14.8146. [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bearer EL, Schlief ML, Breakefield XO, Schuback DE, Reese TS, LaVail JH (1999) Squid axoplasm supports the retrograde axonal transport of herpes simplex virus. Biol Bull 197(2):257–258

    Article  CAS  Google Scholar 

  9. Bearer EL, Wu C (2019) Herpes simplex virus, Alzheimer’s disease and a possible role for Rab GTPases. Front Cell Dev Biol 7. https://doi.org/10.3389/fcell.2019.00134

  10. Satpute-Krishnan P, DeGiorgis JA, Bearer EL (2003) Fast anterograde transport of herpes simplex virus: role for the amyloid precursor protein of Alzheimer’s disease. Aging Cell 2(6):305–318

    Article  CAS  Google Scholar 

  11. Shimomura O (2009) Discovery of green fluorescent protein (GFP) (Nobel lecture). Angew Chem Int Ed Engl 48(31):5590–5602. https://doi.org/10.1002/anie.200902240

    Article  CAS  PubMed  Google Scholar 

  12. Gunawardena S, Goldstein LS (2001) Disruption of axonal transport and neuronal viability by amyloid precursor protein mutations in Drosophila. Neuron 32(3):389–401. https://doi.org/10.1016/S0896-6273(01)00496-2. [pii]

    Article  CAS  PubMed  Google Scholar 

  13. Kamal A, Goldstein LS (2000) Connecting vesicle transport to the cytoskeleton. Curr Opin Cell Biol 12(4):503–508

    Article  CAS  Google Scholar 

  14. Kamal A, Goldstein LS (2002) Principles of cargo attachment to cytoplasmic motor proteins. Curr Opin Cell Biol 14(1):63–68

    Article  CAS  Google Scholar 

  15. Kamal A, Stokin GB, Yang Z, Xia CH, Goldstein LS (2000) Axonal transport of amyloid precursor protein is mediated by direct binding to the kinesin light chain subunit of kinesin-I. Neuron 28(2):449–459

    Article  CAS  Google Scholar 

  16. Kamal A, Almenar-Queralt A, LeBlanc JF, Roberts EA, Goldstein LS (2001) Kinesin-mediated axonal transport of a membrane compartment containing beta-secretase and presenilin-1 requires APP. Nature 414(6864):643–648

    Article  CAS  Google Scholar 

  17. Satpute-Krishnan P, DeGiorgis JA, Conley MP, Jang M, Bearer EL (2006) A peptide zipcode sufficient for anterograde transport within amyloid precursor protein. Proc Natl Acad Sci U S A 103(44):16532–16537

    Article  CAS  Google Scholar 

  18. Bearer EL, Falzone TL, Zhang X, Biris O, Rasin A, Jacobs RE (2007) Role of neuronal activity and kinesin on tract tracing by manganese-enhanced MRI (MEMRI). NeuroImage 37(Suppl 1):S37–S46

    Article  Google Scholar 

  19. Cromberg LE, Saez TMM, Otero MG, Tomasella E, Alloatti M, Damianich A, Pozo Devoto V, Ferrario J, Gelman D, Rubinstein M, Falzone TL (2019) Neuronal KIF5b deletion induces striatum-dependent locomotor impairments and defects in membrane presentation of dopamine D2 receptors. J Neurochem 149(3):362–380. https://doi.org/10.1111/jnc.14665

    Article  CAS  PubMed  Google Scholar 

  20. Saez TMM, Fernandez Bessone I, Rodriguez MS, Alloatti M, Otero MG, Cromberg LE, Pozo Devoto VM, Oubiña G, Sosa L, Buffone MG, Gelman DM, Falzone TL (2020) Kinesin-1-mediated axonal transport of CB1 receptors is required for cannabinoid-dependent axonal growth and guidance. Development 147(8). https://doi.org/10.1242/dev.184069

  21. Lacovich V, Espindola SL, Alloatti M, Pozo Devoto V, Cromberg LE, Čarná ME, Forte G, Gallo JM, Bruno L, Stokin GB, Avale ME, Falzone TL (2017) Tau isoforms imbalance impairs the axonal transport of the amyloid precursor protein in human neurons. J Neurosci 37(1):58–69. https://doi.org/10.1523/jneurosci.2305-16.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pozo Devoto VM, Dimopoulos N, Alloatti M, Pardi MB, Saez TM, Otero MG, Cromberg LE, Marín-Burgin A, Scassa ME, Stokin GB, Schinder AF, Sevlever G, Falzone TL (2017) αSynuclein control of mitochondrial homeostasis in human-derived neurons is disrupted by mutations associated with Parkinson’s disease. Sci Rep 7(1):5042. https://doi.org/10.1038/s41598-017-05334-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Seamster PE, Loewenberg M, Pascal J, Chauviere A, Gonzales A, Cristini V, Bearer EL (2012) Quantitative measurements and modeling of cargo-motor interactions during fast transport in the living axon. Phys Biol 9(5):055005. https://doi.org/10.1088/1478-3975/9/5/055005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lazarov O, Morfini GA, Lee EB, Farah MH, Szodorai A, DeBoer SR, Koliatsos VE, Kins S, Lee VM, Wong PC, Price DL, Brady ST, Sisodia SS (2005) Axonal transport, amyloid precursor protein, kinesin-1, and the processing apparatus: revisited. J Neurosci 25(9):2386–2395. https://doi.org/10.1523/jneurosci.3089-04.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lakshmana MK, Stevenson JW, Conaty EA, Walsh RB, Poidomani PJ, Samoriski CM, Scollins BJ, DeGiorgis JA (2016) The amyloid precursor protein of Alzheimer’s disease clusters at the organelle/microtubule interface on organelles that bind microtubules in an ATP dependent manner. PLoS One 11(1):e0147808. https://doi.org/10.1371/journal.pone.0147808

    Article  CAS  Google Scholar 

  26. M-m F, Holzbaur ELF (2013) JIP1 regulates the directionality of APP axonal transport by coordinating kinesin and dynein motors. J Cell Biol 202(3):495–508. https://doi.org/10.1083/jcb.201302078

    Article  CAS  Google Scholar 

  27. Hammond JW, Griffin K, Jih GT, Stuckey J, Verhey KJ (2008) Co-operative versus independent transport of different cargoes by Kinesin-1. Traffic 9(5):725–741

    Article  CAS  Google Scholar 

  28. Horiuchi D, Barkus RV, Pilling AD, Gassman A, Saxton WM (2005) APLIP1, a kinesin binding JIP-1/JNK scaffold protein, influences the axonal transport of both vesicles and mitochondria in Drosophila. Curr Biol 15(23):2137–2141

    Article  CAS  Google Scholar 

  29. Horiuchi D, Collins CA, Bhat P, Barkus RV, Diantonio A, Saxton WM (2007) Control of a kinesin-cargo linkage mechanism by JNK pathway kinases. Curr Biol 17(15):1313–1317

    Article  CAS  Google Scholar 

  30. Muresan Z, Muresan V (2005) Coordinated transport of phosphorylated amyloid-beta precursor protein and c-Jun NH2-terminal kinase-interacting protein-1. J Cell Biol 171(4):615–625. https://doi.org/10.1083/jcb.200502043. [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Muresan Z, Muresan V (2005) c-Jun NH2-terminal kinase-interacting protein-3 facilitates phosphorylation and controls localization of amyloid-beta precursor protein. J Neurosci 25(15):3741–3751

    Article  CAS  Google Scholar 

  32. Bowman AB, Kamal A, Ritchings BW, Philp AV, McGrail M, Gindhart JG, Goldstein LS (2000) Kinesin-dependent axonal transport is mediated by the sunday driver (SYD) protein. Cell 103(4):583–594

    Article  CAS  Google Scholar 

  33. Liscovitch-Brauer N, Alon S, Porath HT, Elstein B, Unger R, Ziv T, Admon A, Levanon EY, Rosenthal JJC, Eisenberg E (2017) Trade-off between transcriptome plasticity and genome evolution in cephalopods. Cell 169(2):191–202. e111. https://doi.org/10.1016/j.cell.2017.03.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vallecillo-Viejo IC, Liscovitch-Brauer N, Diaz Quiroz JF, Montiel-Gonzalez MF, Nemes SE, Rangan KJ, Levinson SR, Eisenberg E, Rosenthal JJC (2020) Spatially regulated editing of genetic information within a neuron. Nucleic Acids Res 48(8):3999–4012. https://doi.org/10.1093/nar/gkaa172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Crawford K, Diaz Quiroz JF, Koenig KM, Ahuja N, Albertin CB, Rosenthal JJC (2020) Highly efficient knockout of a squid pigmentation gene. Curr Biol 30(17):3484–3490.e3484. https://doi.org/10.1016/j.cub.2020.06.099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bearer EL, Reese TS (1999) Association of actin filaments with axonal microtubule tracts. J Neurocytol 28(2):85–98

    Article  CAS  Google Scholar 

  37. Lasek RJ, Brady ST (1985) Attachment of transported vesicles to microtubules in axoplasm is facilitated by AMP-PNP. Nature 316(6029):645–647. https://doi.org/10.1038/316645a0

    Article  CAS  PubMed  Google Scholar 

  38. Brady ST, Pfister KK, Bloom GS (1990) A monoclonal antibody against kinesin inhibits both anterograde and retrograde fast axonal transport in squid axoplasm. Proc Natl Acad Sci U S A 87(3):1061–1065. https://doi.org/10.1073/pnas.87.3.1061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Galbraith JA, Reese TS, Schlief ML, Gallant PE (1999) Slow transport of unpolymerized tubulin and polymerized neurofilament in the squid giant axon. Proc Natl Acad Sci U S A 96(20):11589–11594. https://doi.org/10.1073/pnas.96.20.11589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jaffe LA, Terasaki M (2004) Quantitative microinjection of oocytes, eggs, and embryos. Methods Cell Biol 74:219–242

    Article  Google Scholar 

  41. Bearer EL, DeGiorgis JA, Bodner RA, Kao AW, Reese TS (1993) Evidence for myosin motors on organelles in squid axoplasm. Proc Natl Acad Sci U S A 90(23):11252–11256

    Article  CAS  Google Scholar 

  42. DeGiorgis JA, Reese TS, Bearer EL (2002) Association of a nonmuscle myosin II with axoplasmic organelles. Mol Biol Cell 13(3):1046–1057

    Article  CAS  Google Scholar 

  43. Bearer EL, DeGiorgis JA, Medeiros NA, Reese TS (1996) Actin-based motility of isolated axoplasmic organelles. Cell Motil Cytoskeleton 33(2):106–114. https://doi.org/10.1002/cm.970330202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bearer EL, DeGiorgis JA, Jaffe H, Medeiros NA, Reese TS (1996) An axoplasmic myosin with a calmodulin-like light chain. Proc Natl Acad Sci U S A 93:6064–6068. https://doi.org/10.1002/cm.970330202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to Prasanna Satpute-Krishnan, Derek Nobrega, and Michael P. Conley for development of this protocol and some of the drawings, to Thomas S. Reese for inspiration and guidance, to Jim Galbraith for construction of the squid table, to Mark Terasaki and Laurinda Jaffe for injection advice, and to the Marine Biological Laboratory Embryology Course for loan of the micromanipulator and other injection equipment. We also thank Paulette Ferland for technical assistance. We co-authors were all at Brown University when this work was developed and we remain Brown Alumni. We are grateful to Brown University for the extraordinary opportunity afforded us to work together: Bearer as tenured professor and PI, DeGiorgis as PhD candidate, and Jang in the BA-MD program. This work was funded by Frederick Bang Summer Whitman Fellowships from MBL (E.L.B.), the Dart Foundation (E.L.B.) as well as NIGMS RO1 GM47368, NINDS RO1 NS046810 and RO1 NS062184 (E.L.B.), and the National Science Foundation under EPSCoR Cooperative Agreement #OIA-1655221 (J.A.D.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elaine L. Bearer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

DeGiorgis, J.A., Jang, M., Bearer, E.L. (2022). The Giant Axon of the Squid: A Simple System for Axonal Transport Studies. In: Vagnoni, A. (eds) Axonal Transport. Methods in Molecular Biology, vol 2431. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1990-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1990-2_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1989-6

  • Online ISBN: 978-1-0716-1990-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics