Skip to main content

Generation of Salivary Gland Organoids from Mouse Embryonic Stem Cells

  • Protocol
  • First Online:
Stem Cell Assays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2429))

Abstract

Salivary glands are exocrine glands composed of several cell types, including the ductal, acinar, and basal/myoepithelial cells. They play important roles in maintaining oral homeostasis and health. During early murine development, the salivary glands, which arise as epithelial buds, are produced from primitive oral epithelia through an interaction between the oral epithelium and mesenchyme.

We recently reported that salivary gland organoids can be generated from mouse embryonic stem cells (ESCs). We recapitulated the process of embryonic salivary gland development using an organoid culture system. The mouse ESC-derived salivary gland organoids consisted of acinar-, ductal-, and myoepithelial-like cells. In this chapter, we describe a protocol for differentiating salivary gland organoids from ESCs .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Atkinson JC, Grisius M, Massey W (2005) Salivary hypofunction and xerostomia: diagnosis and treatment. Dent Clin N Am 49:309–326

    Article  Google Scholar 

  2. Guggenheimer J, Moore PA (2003) Xerostomia: etiology, recognition and treatment. J Am Dent Assoc 134:61–119

    Article  Google Scholar 

  3. Rocchi C, Emmerson E (2020) Mouth-watering results: clinical need, current approaches, and future directions for salivary gland regeneration. Trends Mol Med 26(7):649–669. https://doi.org/10.1016/j.molmed.2020.03.009

    Article  PubMed  Google Scholar 

  4. Koehler KR, Mikosz AM, Molosh AI et al (2013) Generation of inner ear sensory epithelia from pluripotent stem cells in 3D culture. Nature 500:217–221

    Article  CAS  Google Scholar 

  5. Eiraku M, Watanabe K, Matsuo-Takasaki M et al (2008) Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell 3:519–532

    Article  CAS  Google Scholar 

  6. Suga H, Kadoshima T, Minaguchi M et al (2011) Self-formation of functional adenohypophysis in three-dimensional culture. Nature 480:57–62

    Article  CAS  Google Scholar 

  7. Antonica F, Kasprzyk DF, Opitz R et al (2012) Generation of functional thyroid from embryonic stem cells. Nature 491:66–71

    Article  CAS  Google Scholar 

  8. Lancaster MA, Knoblich JA (2014) Organogenesis in a dish: modeling development and disease using organoid technologies. Science 345:1247125

    Article  Google Scholar 

  9. Eiraku M, Takata N, Ishibashi H et al (2011) Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472:51–56

    Article  CAS  Google Scholar 

  10. Spence JR, Mayhew CN, Rankin SA et al (2011) Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature 470:105–109

    Article  Google Scholar 

  11. Takebe T, Sekine K, Enomura M et al (2013) Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature 499:481–484

    Article  CAS  Google Scholar 

  12. Taguchi A, Nishinakamura R (2017) Higher-order kidney organogenesis from pluripotent stem cells. Cell Stem Cell 21:730–746.e6

    Article  CAS  Google Scholar 

  13. Takasato M, Er PX, Chiu HS et al (2016) Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature 536:238

    Article  CAS  Google Scholar 

  14. Ozone C, Suga H, Eiraku M et al (2016) Functional anterior pituitary generated in self-organizing culture of human embryonic stem cells. Nat Commun 7:1–10

    Article  Google Scholar 

  15. Tanaka J, Ogawa M, Hojo H et al (2018) Generation of orthotopically functional salivary gland from embryonic stem cells. Nat Commun 9:4216

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Mishima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tanaka, J., Mishima, K. (2022). Generation of Salivary Gland Organoids from Mouse Embryonic Stem Cells. In: Kannan, N., Beer, P. (eds) Stem Cell Assays. Methods in Molecular Biology, vol 2429. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1979-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1979-7_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1978-0

  • Online ISBN: 978-1-0716-1979-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics