Skip to main content

Generation of Embryonic Origin-Specific Vascular Smooth Muscle Cells from Human Induced Pluripotent Stem Cells

  • Protocol
  • First Online:
Stem Cell Assays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2429))

Abstract

Vascular smooth muscle cells (VSMCs), a highly mosaic tissue, arise from multiple distinct embryonic origins and populate different regions of our vascular network with defined boundaries. Accumulating evidence has revealed that the heterogeneity of VSMC origins contributes to region-specific vascular diseases such as atherosclerosis and aortic aneurysm. These findings highlight the necessity of taking into account lineage-dependent responses of VSMCs to common vascular risk factors when studying vascular diseases. This chapter describes a reproducible, stepwise protocol for the generation of isogenic VSMC subtypes originated from proepicardium, second heart field, cardiac neural crest, and ventral somite using human induced pluripotent stem cells. By leveraging this robust induction protocol, patient-derived VSMC subtypes of desired embryonic origins can be generated for disease modeling as well as drug screening and development for vasculopathies with regional susceptibility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Owens GK, Kumar MS, Wamhoff BR (2004) Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev 84(3):767–801. https://doi.org/10.1152/physrev.00041.2003

    Article  CAS  PubMed  Google Scholar 

  2. Berk BC (2001) Vascular smooth muscle growth: autocrine growth mechanisms. Physiol Rev 81(3):999–1030. https://doi.org/10.1152/physrev.2001.81.3.999

    Article  CAS  PubMed  Google Scholar 

  3. Basatemur GL, Jorgensen HF, Clarke MCH, Bennett MR, Mallat Z (2019) Vascular smooth muscle cells in atherosclerosis. Nat Rev Cardiol 16(12):727–744. https://doi.org/10.1038/s41569-019-0227-9

    Article  PubMed  Google Scholar 

  4. Majesky MW (2007) Developmental basis of vascular smooth muscle diversity. Arterioscler Thromb Vasc Biol 27(6):1248–1258. https://doi.org/10.1161/ATVBAHA.107.141069

    Article  CAS  PubMed  Google Scholar 

  5. Cai CL, Martin JC, Sun Y, Cui L, Wang L, Ouyang K, Yang L, Bu L, Liang X, Zhang X, Stallcup WB, Denton CP, McCulloch A, Chen J, Evans SM (2008) A myocardial lineage derives from Tbx18 epicardial cells. Nature 454(7200):104–108. https://doi.org/10.1038/nature06969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhou B, Ma Q, Rajagopal S, Wu SM, Domian I, Rivera-Feliciano J, Jiang D, von Gise A, Ikeda S, Chien KR, Pu WT (2008) Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature 454(7200):109–113. https://doi.org/10.1038/nature07060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sawada H, Rateri DL, Moorleghen JJ, Majesky MW, Daugherty A (2017) Smooth muscle cells derived from second heart field and cardiac neural crest reside in spatially distinct domains in the media of the ascending aorta. Arterioscler Thromb Vasc Biol 37(9):1722–1726. https://doi.org/10.1161/ATVBAHA.117.309599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jiang X, Rowitch DH, Soriano P, McMahon AP, Sucov HM (2000) Fate of the mammalian cardiac neural crest. Development 127(8):1607–1616

    Article  CAS  Google Scholar 

  9. Pouget C, Gautier R, Teillet MA, Jaffredo T (2006) Somite-derived cells replace ventral aortic hemangioblasts and provide aortic smooth muscle cells of the trunk. Development 133(6):1013–1022. https://doi.org/10.1242/dev.02269

    Article  CAS  PubMed  Google Scholar 

  10. Wasteson P, Johansson BR, Jukkola T, Breuer S, Akyurek LM, Partanen J, Lindahl P (2008) Developmental origin of smooth muscle cells in the descending aorta in mice. Development 135(10):1823–1832. https://doi.org/10.1242/dev.020958

    Article  CAS  PubMed  Google Scholar 

  11. Wilm B, Ipenberg A, Hastie ND, Burch JB, Bader DM (2005) The serosal mesothelium is a major source of smooth muscle cells of the gut vasculature. Development 132(23):5317–5328. https://doi.org/10.1242/dev.02141

    Article  CAS  PubMed  Google Scholar 

  12. Asahina K, Zhou B, Pu WT, Tsukamoto H (2011) Septum transversum-derived mesothelium gives rise to hepatic stellate cells and perivascular mesenchymal cells in developing mouse liver. Hepatology 53(3):983–995. https://doi.org/10.1002/hep.24119

    Article  CAS  PubMed  Google Scholar 

  13. Que J, Wilm B, Hasegawa H, Wang F, Bader D, Hogan BL (2008) Mesothelium contributes to vascular smooth muscle and mesenchyme during lung development. Proc Natl Acad Sci U S A 105(43):16626–16630. https://doi.org/10.1073/pnas.0808649105

    Article  PubMed  PubMed Central  Google Scholar 

  14. MacFarlane EG, Parker SJ, Shin JY, Kang BE, Ziegler SG, Creamer TJ, Bagirzadeh R, Bedja D, Chen Y, Calderon JF, Weissler K, Frischmeyer-Guerrerio PA, Lindsay ME, Habashi JP, Dietz HC (2019) Lineage-specific events underlie aortic root aneurysm pathogenesis in Loeys-Dietz syndrome. J Clin Invest 129(2):659–675. https://doi.org/10.1172/JCI123547

    Article  PubMed  PubMed Central  Google Scholar 

  15. Dobnikar L, Taylor AL, Chappell J, Oldach P, Harman JL, Oerton E, Dzierzak E, Bennett MR, Spivakov M, Jorgensen HF (2018) Disease-relevant transcriptional signatures identified in individual smooth muscle cells from healthy mouse vessels. Nat Commun 9(1):4567. https://doi.org/10.1038/s41467-018-06891-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sinha S, Santoro MM (2018) New models to study vascular mural cell embryonic origin: implications in vascular diseases. Cardiovasc Res 114(4):481–491. https://doi.org/10.1093/cvr/cvy005

    Article  CAS  PubMed  Google Scholar 

  17. Klein D (2018) iPSCs-based generation of vascular cells: reprogramming approaches and applications. Cell Mol Life Sci 75(8):1411–1433. https://doi.org/10.1007/s00018-017-2730-7

    Article  CAS  PubMed  Google Scholar 

  18. Roostalu U, Wong JK (2018) Arterial smooth muscle dynamics in development and repair. Dev Biol 435(2):109–121. https://doi.org/10.1016/j.ydbio.2018.01.018

    Article  CAS  PubMed  Google Scholar 

  19. Matsa E, Ahrens JH, Wu JC (2016) Human induced pluripotent stem cells as a platform for personalized and precision cardiovascular medicine. Physiol Rev 96(3):1093–1126. https://doi.org/10.1152/physrev.00036.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Paik DT, Chandy M, Wu JC (2020) Patient and disease-specific induced pluripotent stem cells for discovery of personalized cardiovascular drugs and therapeutics. Pharmacol Rev 72(1):320–342. https://doi.org/10.1124/pr.116.013003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fukuta M, Nakai Y, Kirino K, Nakagawa M, Sekiguchi K, Nagata S, Matsumoto Y, Yamamoto T, Umeda K, Heike T, Okumura N, Koizumi N, Sato T, Nakahata T, Saito M, Otsuka T, Kinoshita S, Ueno M, Ikeya M, Toguchida J (2014) Derivation of mesenchymal stromal cells from pluripotent stem cells through a neural crest lineage using small molecule compounds with defined media. PLoS One 9(12):e112291. https://doi.org/10.1371/journal.pone.0112291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hackland JOS, Frith TJR, Thompson O, Marin Navarro A, Garcia-Castro MI, Unger C, Andrews PW (2017) Top-down inhibition of BMP signaling enables robust induction of hPSCs into neural crest in fully defined, xeno-free conditions. Stem Cell Reports 9(4):1043–1052. https://doi.org/10.1016/j.stemcr.2017.08.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Loh KM, Chen A, Koh PW, Deng TZ, Sinha R, Tsai JM, Barkal AA, Shen KY, Jain R, Morganti RM, Shyh-Chang N, Fernhoff NB, George BM, Wernig G, Salomon REA, Chen Z, Vogel H, Epstein JA, Kundaje A, Talbot WS, Beachy PA, Ang LT, Weissman IL (2016) Mapping the pairwise choices leading from pluripotency to human bone, heart, and other mesoderm cell types. Cell 166(2):451–467. https://doi.org/10.1016/j.cell.2016.06.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Brade T, Pane LS, Moretti A, Chien KR, Laugwitz KL (2013) Embryonic heart progenitors and cardiogenesis. Cold Spring Harb Perspect Med 3(10):a013847. https://doi.org/10.1101/cshperspect.a013847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Buckingham M, Meilhac S, Zaffran S (2005) Building the mammalian heart from two sources of myocardial cells. Nat Rev Genet 6(11):826–835. https://doi.org/10.1038/nrg1710

    Article  CAS  PubMed  Google Scholar 

  26. Thattaliyath B, Hutson M (2016) Neural crest. In: Congenital heart diseases: the broken heart. Springer, Vienna, pp 41–53

    Chapter  Google Scholar 

  27. Brown CB, Feiner L, Lu MM, Li J, Ma X, Webber AL, Jia L, Raper JA, Epstein JA (2001) PlexinA2 and semaphorin signaling during cardiac neural crest development. Development 128(16):3071–3080

    Article  CAS  Google Scholar 

  28. Holm TM, Habashi JP, Doyle JJ, Bedja D, Chen Y, van Erp C, Lindsay ME, Kim D, Schoenhoff F, Cohn RD, Loeys BL, Thomas CJ, Patnaik S, Marugan JJ, Judge DP, Dietz HC (2011) Noncanonical TGFbeta signaling contributes to aortic aneurysm progression in Marfan syndrome mice. Science 332(6027):358–361. https://doi.org/10.1126/science.1192149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang J, McIntosh BE, Wang B, Brown ME, Probasco MD, Webster S, Duffin B, Zhou Y, Guo LW, Burlingham WJ, Kent C, Ferris M, Thomson JA (2019) A human pluripotent stem cell-based screen for smooth muscle cell differentiation and maturation identifies inhibitors of intimal hyperplasia. Stem Cell Reports 12(6):1269–1281. https://doi.org/10.1016/j.stemcr.2019.04.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Patsch C, Challet-Meylan L, Thoma EC, Urich E, Heckel T, O'Sullivan JF, Grainger SJ, Kapp FG, Sun L, Christensen K, Xia Y, Florido MH, He W, Pan W, Prummer M, Warren CR, Jakob-Roetne R, Certa U, Jagasia R, Freskgard PO, Adatto I, Kling D, Huang P, Zon LI, Chaikof EL, Gerszten RE, Graf M, Iacone R, Cowan CA (2015) Generation of vascular endothelial and smooth muscle cells from human pluripotent stem cells. Nat Cell Biol 17(8):994–1003. https://doi.org/10.1038/ncb3205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported in part by research grants from NIH R01 HL1265276, R01 HL133272, R01 HL146690, R01 HL141371 (JCW), Tobacco-Related Disease Research Program (TRDRP) 30FT0852 (MS) and 27IR-0012 (JCW), and AHA 17MERIT33610009 (JCW) and AHA Career Development Award 19CDA34760019 (CL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph C. Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Shen, M., Liu, C., Wu, J.C. (2022). Generation of Embryonic Origin-Specific Vascular Smooth Muscle Cells from Human Induced Pluripotent Stem Cells. In: Kannan, N., Beer, P. (eds) Stem Cell Assays. Methods in Molecular Biology, vol 2429. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1979-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1979-7_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1978-0

  • Online ISBN: 978-1-0716-1979-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics