Skip to main content

Development of In Silico Methods for Toxicity Prediction in Collaboration Between Academia and the Pharmaceutical Industry

  • Protocol
  • First Online:
In Silico Methods for Predicting Drug Toxicity

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2425))

  • 1402 Accesses

Abstract

The pharmaceutical industry would benefit from the collaboration with academic groups in the development of predictive safety models using the newest computational technologies. However, this collaboration is sometimes hampered by the handling of confidential proprietary information and different working practices in both environments. In this manuscript, we propose a strategy for facilitating this collaboration, based on the use of modeling frameworks developed for facilitating the use of sensitive data, as well as the development, interchange, hosting, and use of predictive models in production. The strategy is illustrated with a real example in which we used Flame, an open-source modeling framework developed in our group, for the development of an in silico eye irritation model. The model was based on bibliographic data, refined during the company–academic group collaboration, and enriched with the incorporation of confidential data, yielding a useful model that was validated experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gaulton A, Hersey A, Nowotka ML et al (2017) The ChEMBL database in 2017. Nucleic Acids Res 45:D945–D954. https://doi.org/10.1093/nar/gkw1074

    Article  CAS  PubMed  Google Scholar 

  2. Hunter FMI, Atkinson FL, Bento AP et al (2018) A large-scale dataset of in vivo pharmacology assay results. Sci Data 5:180230. https://doi.org/10.1038/sdata.2018.230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lo Y-C, Rensi SE, Torng W, Altman RB (2018) Machine learning in chemoinformatics and drug discovery. Drug Discov Today 23:1538–1546. https://doi.org/10.1016/j.drudis.2018.05.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pognan F, Steger-Hartmann T, Díaz C et al (2021) The eTRANSAFE project on translational safety assessment through integrative knowledge management: achievements and perspectives. Pharmaceuticals 14:237. https://doi.org/10.3390/ph14030237

    Article  PubMed  PubMed Central  Google Scholar 

  5. Laverty H, Meulien P (2019) The innovative medicines initiative −10 years of public-private collaboration. Front Med 6:275. https://doi.org/10.3389/fmed.2019.00275

    Article  Google Scholar 

  6. Sanz F, Pognan F, Steger-Hartmann T, Díaz C (2017) Legacy data sharing to improve drug safety assessment: the eTOX project. Nat Rev Drug Discov 16:811–812. https://doi.org/10.1038/nrd.2017.177

    Article  CAS  PubMed  Google Scholar 

  7. Ferreira S, Fisher C, Furlong LI et al (2020) Quantitative systems toxicology modeling to address key safety questions in drug development: a focus of the TransQST consortium. Chem Res Toxicol 33:7–9. https://doi.org/10.1021/acs.chemrestox.9b00499

    Article  CAS  PubMed  Google Scholar 

  8. Moné MJ, Pallocca G, Escher SE et al (2020) Setting the stage for next-generation risk assessment with non-animal approaches: the EU-ToxRisk project experience. Arch Toxicol 94:3581–3592. https://doi.org/10.1007/s00204-020-02866-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Melloddy project. https://www.melloddy.eu/. Accessed 12 Apr 2021

  10. Carrió P, López O, Sanz F, Pastor M (2015) eTOXlab, an open source modeling framework for implementing predictive models in production environments. J Cheminform 7:8. https://doi.org/10.1186/s13321-015-0058-6

  11. Pastor M, Gómez-Tamayo JC, Sanz F (2021) Flame: an open source framework for model development, hosting, and usage in production environments. J Cheminform 13:31. https://doi.org/10.1186/s13321-021-00509-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Flame. https://github.com/phi-grib/flame. Accessed 3 Apr 2021

  13. CTFile formats. http://help.accelrysonline.com/ulm/onelab/1.0/content/ulm_pdfs/direct/reference/ctfileformats2016.pdf. Accessed 3 Apr 2021

  14. MOKA. https://www.moldiscovery.com/software/moka/. Accessed 3 Apr 2021

  15. Milletti F, Storchi L, Sforna G, Cruciani G (2007) New and original pKa prediction method using grid molecular interaction fields. J Chem Inf Model 47:2172–2181. https://doi.org/10.1021/ci700018y

    Article  CAS  PubMed  Google Scholar 

  16. CORINA. https://www.mn-am.com/products/corina. Accessed 3 Apr 2021

  17. Sadowski J, Gasteiger J (1993) From atoms and bonds to three-dimensional atomic coordinates: automatic model builders. Chem Rev 93:2567–2581. https://doi.org/10.1021/cr00023a012

  18. Pastor M, Cruciani G, McLay I et al (2000) GRid-INdependent descriptors (GRIND): a novel class of alignment-independent three-dimensional molecular descriptors. J Med Chem 43:3233–3243. https://doi.org/10.1021/jm000941m

    Article  CAS  PubMed  Google Scholar 

  19. Pentacle. https://www.moldiscovery.com/software/pentacle/. Accessed 3 Apr 2021

  20. Yap CW (2011) PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints. J Comput Chem 32:1466–1474. https://doi.org/10.1002/jcc.21707

    Article  CAS  PubMed  Google Scholar 

  21. RDKit: Open-Source Cheminformatics Software. https://www.rdkit.org/

  22. Varoquaux G, Buitinck L, Louppe G et al (2015) Scikit-learn. GetMobile Mob Comput Commun 19:29–33

    Article  Google Scholar 

  23. Sharma N (2018) XGBoost. The Extreme Gradient Boosting for Mining Applications. GRIN Verlag

    Google Scholar 

  24. Norinder U, Carlsson L, Boyer S, Eklund M (2015) Introducing conformal prediction in predictive modeling for regulatory purposes. A transparent and flexible alternative to applicability domain determination. Regul Toxicol Pharmacol 71:279–284. https://doi.org/10.1016/j.yrtph.2014.12.021

    Article  PubMed  Google Scholar 

  25. European Commission JRC-IHCP QSAR Model Reporting Format. https://publications.jrc.ec.europa.eu/repository/bitstream/JRC107491/kjna28713enn.pdf. Accessed 11 Feb 2021

  26. Wang Q, Li X, Yang H et al (2017) In silico prediction of serious eye irritation or corrosion potential of chemicals. RSC Adv 7:6697–6703. https://doi.org/10.1039/C6RA25267B

    Article  CAS  Google Scholar 

  27. Pastor M, Quintana J, Sanz F (2018) Development of an infrastructure for the prediction of biological endpoints in industrial environments. Lessons learned at the eTOX project. Front Pharmacol 9:1–8. https://doi.org/10.3389/fphar.2018.01147

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has received funding from the eTRANSAFE project (Grant Agreement No. 777365), developed under the Innovative Medicines Initiative Joint Undertaking (IMI2), resources of which are composed of a financial contribution from the European Union’s Seventh Framework Programme (FP7/2007-2013) and EFPIA companies’ in kind contributions. The authors of this article are also involved the H2020 EU-ToxRisk project (no. 681002) and FAIRplus (no. 802750). The Research Programme on Biomedical Informatics (GRIB) is a member of the Spanish National Bioinformatics Institute (INB), funded by ISCIII and FEDER (PT17/0009/0014). The DCEXS is a ‘Unidad de Excelencia María de Maeztu’, funded by the AEI (CEX2018-000782-M). The GRIB is also supported by the Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR), Generalitat de Catalunya (2017 SGR 00519).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Pastor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pastor, M., Sanz, F., Bringezu, F. (2022). Development of In Silico Methods for Toxicity Prediction in Collaboration Between Academia and the Pharmaceutical Industry. In: Benfenati, E. (eds) In Silico Methods for Predicting Drug Toxicity. Methods in Molecular Biology, vol 2425. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1960-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1960-5_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1959-9

  • Online ISBN: 978-1-0716-1960-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics