Skip to main content

Survey of In Vitro Model Systems for Investigation of Key Cellular Processes Associated with Atherosclerosis

  • Protocol
  • First Online:
Atherosclerosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2419))

Abstract

Atherosclerosis progression is associated with a complex array of cellular processes in the arterial wall, including endothelial cell activation/dysfunction, chemokine-driven recruitment of immune cells, differentiation of monocytes to macrophages and their subsequent transformation into lipid laden foam cells, activation of inflammasome and pro-inflammatory signaling, and migration of smooth muscle cells from the media to the intima. The use of in vitro model systems has considerably advanced our understanding of these atherosclerosis-associated processes and they are also often used in drug discovery and other screening platforms. This chapter will describe key in vitro model systems employed frequently in atherosclerosis research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chan YH, Ramji DP (2020) A perspective on targeting inflammation and cytokine actions in atherosclerosis. Future Med Chem 12(7):613–626. https://doi.org/10.4155/fmc-2019-0301

    Article  CAS  PubMed  Google Scholar 

  2. Gimbrone MA, García-Cardeña G (2016) Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res 118(4):620–636. https://doi.org/10.1161/CIRCRESAHA.115.306301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mundi S, Massaro M, Scoditti E, Carluccio MA, van Hinsbergh VWM, Iruela-Arispe ML, De Caterina R (2018) Endothelial permeability, LDL deposition, and cardiovascular risk factors-a review. Cardiovasc Res 114(1):35–52. https://doi.org/10.1093/cvr/cvx226

    Article  CAS  PubMed  Google Scholar 

  4. Buckley ML, Ramji DP (2015) The influence of dysfunctional signaling and lipid homeostasis in mediating the inflammatory responses during atherosclerosis. Biochim Biophys Acta 1852(7):1498–1510. https://doi.org/10.1016/j.bbadis.2015.04.011

    Article  CAS  PubMed  Google Scholar 

  5. McLaren JE, Michael DR, Ashlin TG, Ramji DP (2011) Cytokines, macrophage lipid metabolism and foam cells: implications for cardiovascular disease therapy. Prog Lipid Res 50(4):331–347. https://doi.org/10.1016/j.plipres.2011.04.002

    Article  CAS  PubMed  Google Scholar 

  6. Barrett TJ (2020) Macrophages in atherosclerosis regression. Arterioscler Thromb Vasc Biol 40(1):20–33. https://doi.org/10.1161/ATVBAHA.119.312802

    Article  CAS  PubMed  Google Scholar 

  7. Yang S, Yuan HQ, Hao YM, Ren Z, Qu SL, Liu LS, Wei DH, Tang ZH, Zhang JF, Jiang ZS (2020) Macrophage polarization in atherosclerosis. Clin Chim Acta 501:142–146. https://doi.org/10.1016/j.cca.2019.10.034

    Article  CAS  PubMed  Google Scholar 

  8. Ramji DP, Davies TS (2015) Cytokines in atherosclerosis: key players in all stages of disease and promising therapeutic targets. Cytokine Growth Factor Rev 26(6):673–685. https://doi.org/10.1016/j.cytogfr.2015.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chia PY, Teo A, Yeo TW (2020) Overview of the assessment of endothelial function in humans. Front Med 7:542567. https://doi.org/10.3389/fmed.2020.542567

    Article  Google Scholar 

  10. Bennett MR, Sinha S, Owens GK (2016) Vascular smooth muscle cells in atherosclerosis. Circ Res 118(4):692–702. https://doi.org/10.1161/CIRCRESAHA.115.306361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Moore KJ, Tabas I (2011) Macrophages in the pathogenesis of atherosclerosis. Cell 145(3):341–355. https://doi.org/10.1016/j.cell.2011.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lordan R, Tsoupras A, Zabetakis I (2020) Platelet activation and prothrombotic mediators at the nexus of inflammation and atherosclerosis: potential role of antiplatelet agents. Blood Rev 45:100694. https://doi.org/10.1016/j.blre.2020.100694

    Article  CAS  PubMed  Google Scholar 

  13. Moss JW, Davies TS, Garaiova I, Plummer SF, Michael DR, Ramji DP (2016) A unique combination of nutritionally active ingredients can prevent several key processes associated with atherosclerosis in vitro. PLoS One 11(3):e0151057. https://doi.org/10.1371/journal.pone.0151057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. McLaren JE, Calder CJ, McSharry BP, Sexton K, Salter RC, Singh NN, Wilkinson GW, Wang EC, Ramji DP (2010) The TNF-like protein 1A-death receptor 3 pathway promotes macrophage foam cell formation in vitro. J Immunol 184(10):5827–5834. https://doi.org/10.4049/jimmunol.0903782

    Article  CAS  PubMed  Google Scholar 

  15. McLaren JE, Michael DR, Salter RC, Ashlin TG, Calder CJ, Miller AM, Liew FY, Ramji DP (2010) IL-33 reduces macrophage foam cell formation. J Immunol 185(2):1222–1229. https://doi.org/10.4049/jimmunol.1000520

    Article  CAS  PubMed  Google Scholar 

  16. Michael DR, Salter RC, Ramji DP (2012) TGF-beta inhibits the uptake of modified low density lipoprotein by human macrophages through a Smad-dependent pathway: a dominant role for Smad-2. Biochim Biophys Acta 1822(10):1608–1616. https://doi.org/10.1016/j.bbadis.2012.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Michael DR, Ashlin TG, Davies CS, Gallagher H, Stoneman TW, Buckley ML, Ramji DP (2013) Differential regulation of macropinocytosis in macrophages by cytokines: implications for foam cell formation and atherosclerosis. Cytokine 64(1):357–361. https://doi.org/10.1016/j.cyto.2013.05.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Michael DR, Ashlin TG, Buckley ML, Ramji DP (2012) Liver X receptors, atherosclerosis and inflammation. Curr Atheroscler Rep 14(3):284–293. https://doi.org/10.1007/s11883-012-0239-y

    Article  CAS  PubMed  Google Scholar 

  19. Le Brocq M, Leslie SJ, Milliken P, Megson IL (2008) Endothelial dysfunction: from molecular mechanisms to measurement, clinical implications, and therapeutic opportunities. Antioxid Redox Signal 10(9):1631–1674. https://doi.org/10.1089/ars.2007.2013

    Article  CAS  PubMed  Google Scholar 

  20. Lidington EA, Moyes DL, McCormack AM, Rose ML (1999) A comparison of primary endothelial cells and endothelial cell lines for studies of immune interactions. Transpl Immunol 7(4):239–246. https://doi.org/10.1016/s0966-3274(99)80008-2

    Article  CAS  PubMed  Google Scholar 

  21. Molina-Sánchez P, Andrés V (2015) Isolation of mouse primary aortic endothelial cells by selection with specific antibodies. Methods Mol Biol 1339:111–117. https://doi.org/10.1007/978-1-4939-2929-0_7

    Article  CAS  PubMed  Google Scholar 

  22. Kobayashi M, Inoue K, Warabi E, Minami T, Kodama T (2005) A simple method of isolating mouse aortic endothelial cells. J Atheroscler Thromb 12(3):138–142. https://doi.org/10.5551/jat.12.138

    Article  PubMed  Google Scholar 

  23. Bachar AR, Scheffer L, Schroeder AS, Nakamura HK, Cobb LJ, Oh YK, Lerman LO, Pagano RE, Cohen P, Lerman A (2010) Humanin is expressed in human vascular walls and has a cytoprotective effect against oxidized LDL-induced oxidative stress. Cardiovasc Res 88(2):360–366. https://doi.org/10.1093/cvr/cvq191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hort MA, Straliotto MR, de Oliveira J, Amoêdo ND, da Rocha JB, Galina A, Ribeiro-do-Valle RM, de Bem AF (2014) Diphenyl diselenide protects endothelial cells against oxidized low density lipoprotein-induced injury: involvement of mitochondrial function. Biochimie 105:172–181. https://doi.org/10.1016/j.biochi.2014.07.004

    Article  CAS  PubMed  Google Scholar 

  25. Bao MH, Zhang YW, Lou XY, Cheng Y, Zhou HH (2014) Protective effects of let-7a and let-7b on oxidized low-density lipoprotein induced endothelial cell injuries. PLoS One 9(9):e106540. https://doi.org/10.1371/journal.pone.0106540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jin X, Yi L, Chen ML, Chen CY, Chang H, Zhang T, Wang L, Zhu JD, Zhang QY, Mi MT (2013) Delphinidin-3-glucoside protects against oxidized low-density lipoprotein-induced mitochondrial dysfunction in vascular endothelial cells via the sodium-dependent glucose transporter SGLT1. PLoS One 8(7):e68617. https://doi.org/10.1371/journal.pone.0068617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lawson C, Rose M, Wolf S (2017) Leukocyte adhesion under hemodynamic flow conditions. Methods Mol Biol 1591:85–100. https://doi.org/10.1007/978-1-4939-6931-9_7

    Article  CAS  PubMed  Google Scholar 

  28. Wang Y, Alexander JS (2011) Analysis of endothelial barrier function in vitro. Methods Mol Biol 763:253–264. https://doi.org/10.1007/978-1-61779-191-8_17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Varejckova M, Gallardo-Vara E, Vicen M, Vitverova B, Fikrova P, Dolezelova E, Rathouska J, Prasnicka A, Blazickova K, Micuda S, Bernabeu C, Nemeckova I, Nachtigal P (2017) Soluble endoglin modulates the pro-inflammatory mediators NF-κB and IL-6 in cultured human endothelial cells. Life Sci 175:52–60. https://doi.org/10.1016/j.lfs.2017.03.014

    Article  CAS  PubMed  Google Scholar 

  30. Souilhol C, Serbanovic-Canic J, Fragiadaki M, Chico TJ, Ridger V, Roddie H, Evans PC (2020) Endothelial responses to shear stress in atherosclerosis: a novel role for developmental genes. Nat Rev Cardiol 17(1):52–63. https://doi.org/10.1038/s41569-019-0239-5

    Article  PubMed  Google Scholar 

  31. Green JP, Souilhol C, Xanthis I, Martinez-Campesino L, Bowden NP, Evans PC, Wilson HL (2018) Atheroprone flow activates inflammation via endothelial ATP-dependent P2X7-p38 signalling. Cardiovasc Res 114(2):324–335. https://doi.org/10.1093/cvr/cvx213

    Article  CAS  PubMed  Google Scholar 

  32. Russo TA, Banuth AMM, Nader HB, Dreyfuss JL (2020) Altered shear stress on endothelial cells leads to remodeling of extracellular matrix and induction of angiogenesis. PLoS One 15(11):e0241040. https://doi.org/10.1371/journal.pone.0241040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Andueza A, Kumar S, Kim J, Kang DW, Mumme HL, Perez JI, Villa-Roel N, Jo H (2020) Endothelial reprogramming by disturbed flow revealed by single-cell RNA and chromatin accessibility study. Cell Rep 33(11):108491. https://doi.org/10.1016/j.celrep.2020.108491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zucchelli E, Majid QA, Foldes G (2019) New artery of knowledge: 3D models of angiogenesis. Vasc Biol 1(1):H135–H143. https://doi.org/10.1530/VB-19-0026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fearon IM, Gaça MD, Nordskog BK (2013) In vitro models for assessing the potential cardiovascular disease risk associated with cigarette smoking. Toxicol in Vitro 27(1):513–522. https://doi.org/10.1016/j.tiv.2012.08.018

    Article  CAS  PubMed  Google Scholar 

  36. Noren Hooten N, Evans MK (2017) Techniques to induce and quantify cellular senescence. J Vis Exp (123). doi:https://doi.org/10.3791/55533

  37. Ko EA, Song MY, Donthamsetty R, Makino A, Yuan JX (2010) Tension measurement in isolated rat and mouse pulmonary artery. Drug Discov Today Dis Model 7(3–4):123–130. https://doi.org/10.1016/j.ddmod.2011.04.001

    Article  Google Scholar 

  38. Flynn MC, Pernes G, Lee MKS, Nagareddy PR, Murphy AJ (2019) Monocytes, macrophages, and metabolic disease in atherosclerosis. Front Pharmacol 10:666. https://doi.org/10.3389/fphar.2019.00666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Woollard KJ, Geissmann F (2010) Monocytes in atherosclerosis: subsets and functions. Nat Rev Cardiol 7(2):77–86. https://doi.org/10.1038/nrcardio.2009.228

    Article  PubMed  PubMed Central  Google Scholar 

  40. Plaisance-Bonstaff K, Faia C, Wyczechowska D, Jeansonne D, Vittori C, Peruzzi F (2019) Isolation, transfection, and culture of primary human monocytes. J Vis Exp (154). https://doi.org/10.3791/59967

  41. Liu Y, Reynolds LM, Ding J, Hou L, Lohman K, Young T, Cui W, Huang Z, Grenier C, Wan M, Stunnenberg HG, Siscovick D, Psaty BM, Rich SS, Rotter JI, Kaufman JD, Burke GL, Murphy S, Jacobs DR, Post W, Hoeschele I, Bell DA, Herrington D, Parks JS, Tracy RP, McCall CE, Stein JH (2017) Blood monocyte transcriptome and epigenome analyses reveal loci associated with human atherosclerosis. Nat Commun 8(1):393. https://doi.org/10.1038/s41467-017-00517-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Qin Z (2012) The use of THP-1 cells as a model for mimicking the function and regulation of monocytes and macrophages in the vasculature. Atherosclerosis 221(1):2–11. https://doi.org/10.1016/j.atherosclerosis.2011.09.003

    Article  CAS  PubMed  Google Scholar 

  43. Verhoeckx K, Cotter P, López-Expósito I, Kleiveland C, Lea T, Mackie A, Requena T, Swiatecka D, Wichers H (2015) The impact of food bioactives on health: in vitro and ex vivo models. Springer, Cham

    Book  Google Scholar 

  44. Escate R, Padro T, Badimon L (2016) LDL accelerates monocyte to macrophage differentiation: effects on adhesion and anoikis. Atherosclerosis 246:177–186. https://doi.org/10.1016/j.atherosclerosis.2016.01.002

    Article  CAS  PubMed  Google Scholar 

  45. Sieg SF, Bazdar DA, Zidar D, Freeman M, Lederman MM, Funderburg NT (2020) Highly oxidized low-density lipoprotein mediates activation of monocytes but does not confer interleukin-1β secretion nor interleukin-15 transpresentation function. Immunology 159(2):221–230. https://doi.org/10.1111/imm.13142

    Article  CAS  PubMed  Google Scholar 

  46. Tsubota Y, Frey JM, Tai PW, Welikson RE, Raines EW (2013) Monocyte ADAM17 promotes diapedesis during transendothelial migration: identification of steps and substrates targeted by metalloproteinases. J Immunol 190(8):4236–4244. https://doi.org/10.4049/jimmunol.1300046

    Article  CAS  PubMed  Google Scholar 

  47. Tsubota Y, Frey JM, Raines EW (2014) Novel ex vivo culture method for human monocytes uses shear flow to prevent total loss of transendothelial diapedesis function. J Leukoc Biol 95(1):191–195. https://doi.org/10.1189/jlb.0513272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gerhardt T, Ley K (2015) Monocyte trafficking across the vessel wall. Cardiovasc Res 107(3):321–330. https://doi.org/10.1093/cvr/cvv147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Angelovich TA, Hearps AC, Maisa A, Kelesidis T, Jaworowski A (2017) Quantification of monocyte transmigration and foam cell formation from individuals with chronic inflammatory conditions. J Vis Exp (128). https://doi.org/10.3791/56293

  50. de Gaetano M, Dempsey E, Marcone S, James WG, Belton O (2013) Conjugated linoleic acid targets β2 integrin expression to suppress monocyte adhesion. J Immunol 191(8):4326–4336. https://doi.org/10.4049/jimmunol.1300990

    Article  CAS  PubMed  Google Scholar 

  51. Netea MG, Domínguez-Andrés J, Barreiro LB, Chavakis T, Divangahi M, Fuchs E, Joosten LAB, van der Meer JWM, Mhlanga MM, Mulder WJM, Riksen NP, Schlitzer A, Schultze JL, Stabell Benn C, Sun JC, Xavier RJ, Latz E (2020) Defining trained immunity and its role in health and disease. Nat Rev Immunol 20(6):375–388. https://doi.org/10.1038/s41577-020-0285-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Flores-Gomez D, Bekkering S, Netea MG, Riksen NP (2020) Trained immunity in atherosclerotic cardiovascular disease. Arterioscler Thromb Vasc Biol 41:62. https://doi.org/10.1161/ATVBAHA.120.314216

    Article  PubMed  Google Scholar 

  53. Bekkering S, Blok BA, Joosten LA, Riksen NP, van Crevel R, Netea MG (2016) In vitro experimental model of trained innate immunity in human primary monocytes. Clin Vaccine Immunol 23(12):926–933. https://doi.org/10.1128/CVI.00349-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bekkering S, Quintin J, Joosten LA, van der Meer JW, Netea MG, Riksen NP (2014) Oxidized low-density lipoprotein induces long-term proinflammatory cytokine production and foam cell formation via epigenetic reprogramming of monocytes. Arterioscler Thromb Vasc Biol 34(8):1731–1738. https://doi.org/10.1161/ATVBAHA.114.303887

    Article  CAS  PubMed  Google Scholar 

  55. Moore KJ, Sheedy FJ, Fisher EA (2013) Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol 13(10):709–721. https://doi.org/10.1038/nri3520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Robbins CS, Hilgendorf I, Weber GF, Theurl I, Iwamoto Y, Figueiredo JL, Gorbatov R, Sukhova GK, Gerhardt LM, Smyth D, Zavitz CC, Shikatani EA, Parsons M, van Rooijen N, Lin HY, Husain M, Libby P, Nahrendorf M, Weissleder R, Swirski FK (2013) Local proliferation dominates lesional macrophage accumulation in atherosclerosis. Nat Med 19(9):1166–1172. https://doi.org/10.1038/nm.3258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tengku-Muhammad TS, Hughes TR, Cryer A, Ramji DP (1996) Differential regulation of lipoprotein lipase in the macrophage J774.2 cell line by cytokines. Cytokine 8(7):525–533. https://doi.org/10.1006/cyto.1996.0071

    Article  CAS  PubMed  Google Scholar 

  58. Jinnouchi H, Guo L, Sakamoto A, Torii S, Sato Y, Cornelissen A, Kuntz S, Paek KH, Fernandez R, Fuller D, Gadhoke N, Surve D, Romero M, Kolodgie FD, Virmani R, Finn AV (2020) Diversity of macrophage phenotypes and responses in atherosclerosis. Cell Mol Life Sci 77(10):1919–1932. https://doi.org/10.1007/s00018-019-03371-3

    Article  CAS  PubMed  Google Scholar 

  59. Chinetti-Gbaguidi G, Colin S, Staels B (2015) Macrophage subsets in atherosclerosis. Nat Rev Cardiol 12(1):10–17. https://doi.org/10.1038/nrcardio.2014.173

    Article  CAS  PubMed  Google Scholar 

  60. Chang HY, Lee HN, Kim W, Surh YJ (2015) Docosahexaenoic acid induces M2 macrophage polarization through peroxisome proliferator-activated receptor γ activation. Life Sci 120:39–47. https://doi.org/10.1016/j.lfs.2014.10.014

    Article  CAS  PubMed  Google Scholar 

  61. Gao S, Zhou J, Liu N, Wang L, Gao Q, Wu Y, Zhao Q, Liu P, Wang S, Liu Y, Guo N, Shen Y, Yuan Z (2015) Curcumin induces M2 macrophage polarization by secretion IL-4 and/or IL-13. J Mol Cell Cardiol 85:131–139. https://doi.org/10.1016/j.yjmcc.2015.04.025

    Article  CAS  PubMed  Google Scholar 

  62. Wang C, Dong C, Xiong S (2016) IL-33 enhances macrophage M2 polarization and protects mice from CVB3-induced viral myocarditis. J Mol Cell Cardiol 103:22–30. https://doi.org/10.1016/j.yjmcc.2016.12.010

    Article  CAS  PubMed  Google Scholar 

  63. Willemsen L, de Winther MP (2020) Macrophage subsets in atherosclerosis as defined by single-cell technologies. J Pathol 250(5):705–714. https://doi.org/10.1002/path.5392

    Article  PubMed  PubMed Central  Google Scholar 

  64. Goldstein JL, Ho YK, Basu SK, Brown MS (1979) Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc Natl Acad Sci U S A 76(1):333–337. https://doi.org/10.1073/pnas.76.1.333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gallagher H, Williams JO, Ferekidis N, Ismail A, Chan YH, Michael DR, Guschina IA, Tyrrell VJ, O’Donnell VB, Harwood JL, Khozin-Goldberg I, Boussiba S, Ramji DP (2019) Dihomo-γ-linolenic acid inhibits several key cellular processes associated with atherosclerosis. Biochim Biophys Acta 1865(9):2538–2550. https://doi.org/10.1016/j.bbadis.2019.06.011

    Article  CAS  Google Scholar 

  66. Taylor JM, Borthwick F, Bartholomew C, Graham A (2010) Overexpression of steroidogenic acute regulatory protein increases macrophage cholesterol efflux to apolipoprotein AI. Cardiovasc Res 86(3):526–534. https://doi.org/10.1093/cvr/cvq015

    Article  CAS  PubMed  Google Scholar 

  67. Xu S, Huang Y, Xie Y, Lan T, Le K, Chen J, Chen S, Gao S, Xu X, Shen X, Huang H, Liu P (2010) Evaluation of foam cell formation in cultured macrophages: an improved method with Oil Red O staining and DiI-oxLDL uptake. Cytotechnology 62(5):473–481. https://doi.org/10.1007/s10616-010-9290-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ganesan R, Henkels KM, Wrenshall LE, Kanaho Y, Di Paolo G, Frohman MA, Gomez-Cambronero J (2018) Oxidized LDL phagocytosis during foam cell formation in atherosclerotic plaques relies on a PLD2-CD36 functional interdependence. J Leukoc Biol 103(5):867–883. https://doi.org/10.1002/JLB.2A1017-407RR

    Article  CAS  PubMed  Google Scholar 

  69. Kruth HS (2013) Fluid-phase pinocytosis of LDL by macrophages: a novel target to reduce macrophage cholesterol accumulation in atherosclerotic lesions. Curr Pharm Des 19(33):5865–5872. https://doi.org/10.2174/1381612811319330005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Litvinov DY, Savushkin EV, Garaeva EA, Dergunov AD (2016) Cholesterol efflux and reverse cholesterol transport: experimental approaches. Curr Med Chem 23(34):3883–3908. https://doi.org/10.2174/0929867323666160809093009

    Article  CAS  PubMed  Google Scholar 

  71. Jiang L, Poon IKH (2019) Methods for monitoring the progression of cell death, cell disassembly and cell clearance. Apoptosis 24(3–4):208–220. https://doi.org/10.1007/s10495-018-01511-x

    Article  CAS  PubMed  Google Scholar 

  72. Doran AC, Yurdagul A, Tabas I (2020) Efferocytosis in health and disease. Nat Rev Immunol 20(4):254–267. https://doi.org/10.1038/s41577-019-0240-6

    Article  CAS  PubMed  Google Scholar 

  73. Proto JD, Doran AC, Gusarova G, Yurdagul A, Sozen E, Subramanian M, Islam MN, Rymond CC, Du J, Hook J, Kuriakose G, Bhattacharya J, Tabas I (2018) Regulatory T cells promote macrophage efferocytosis during inflammation resolution. Immunity 49(4):666–677.e666. https://doi.org/10.1016/j.immuni.2018.07.015

    Article  CAS  PubMed  Google Scholar 

  74. Duewell P, Kono H, Rayner KJ, Sirois CM, Vladimer G, Bauernfeind FG, Abela GS, Franchi L, Nuñez G, Schnurr M, Espevik T, Lien E, Fitzgerald KA, Rock KL, Moore KJ, Wright SD, Hornung V, Latz E (2010) NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464(7293):1357–1361. https://doi.org/10.1038/nature08938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Newby AC (2008) Metalloproteinase expression in monocytes and macrophages and its relationship to atherosclerotic plaque instability. Arterioscler Thromb Vasc Biol 28(12):2108–2114. https://doi.org/10.1161/ATVBAHA.108.173898

    Article  CAS  PubMed  Google Scholar 

  76. Toth M, Sohail A, Fridman R (2012) Assessment of gelatinases (MMP-2 and MMP-9) by gelatin zymography. Methods Mol Biol 878:121–135. https://doi.org/10.1007/978-1-61779-854-2_8

    Article  CAS  PubMed  Google Scholar 

  77. Watt V, Chamberlain J, Steiner T, Francis S, Crossman D (2011) TRAIL attenuates the development of atherosclerosis in apolipoprotein E deficient mice. Atherosclerosis 215(2):348–354. https://doi.org/10.1016/j.atherosclerosis.2011.01.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Basatemur GL, Jørgensen HF, Clarke MCH, Bennett MR, Mallat Z (2019) Vascular smooth muscle cells in atherosclerosis. Nat Rev Cardiol 16(12):727–744. https://doi.org/10.1038/s41569-019-0227-9

    Article  PubMed  Google Scholar 

  79. Metz RP, Patterson JL, Wilson E (2012) Vascular smooth muscle cells: isolation, culture, and characterization. Methods Mol Biol 843:169–176. https://doi.org/10.1007/978-1-61779-523-7_16

    Article  CAS  PubMed  Google Scholar 

  80. Villa-Bellosta R, Hamczyk MR (2015) Isolation and culture of aortic smooth muscle cells and in vitro calcification assay. Methods Mol Biol 1339:119–129. https://doi.org/10.1007/978-1-4939-2929-0_8

    Article  CAS  PubMed  Google Scholar 

  81. Zhao D, Li J, Xue C, Feng K, Liu L, Zeng P, Wang X, Chen Y, Li L, Zhang Z, Duan Y, Han J, Yang X (2020) TL1A inhibits atherosclerosis in apoE-deficient mice by regulating the phenotype of vascular smooth muscle cells. J Biol Chem 295(48):16314–16327. https://doi.org/10.1074/jbc.RA120.015486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Watanabe R, Watanabe H, Takahashi Y, Kojima M, Konii H, Watanabe K, Shirai R, Sato K, Matsuyama TA, Ishibashi-Ueda H, Iso Y, Koba S, Kobayashi Y, Hirano T, Watanabe T (2016) Atheroprotective effects of tumor necrosis factor-stimulated gene-6. JACC Basic Transl Sci 1(6):494–509. https://doi.org/10.1016/j.jacbts.2016.07.008

    Article  PubMed  PubMed Central  Google Scholar 

  83. Huang J, Kontos CD (2002) Inhibition of vascular smooth muscle cell proliferation, migration, and survival by the tumor suppressor protein PTEN. Arterioscler Thromb Vasc Biol 22(5):745–751. https://doi.org/10.1161/01.atv.0000016358.05294.8d

    Article  CAS  PubMed  Google Scholar 

  84. Liang CC, Park AY, Guan JL (2007) In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc 2(2):329–333. https://doi.org/10.1038/nprot.2007.30

    Article  CAS  PubMed  Google Scholar 

  85. Wang Y, Dubland JA, Allahverdian S, Asonye E, Sahin B, Jaw JE, Sin DD, Seidman MA, Leeper NJ, Francis GA (2019) Smooth muscle cells contribute the majority of foam cells in ApoE (Apolipoprotein E)-deficient mouse atherosclerosis. Arterioscler Thromb Vasc Biol 39(5):876–887. https://doi.org/10.1161/ATVBAHA.119.312434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Di Bartolo BA, Cartland SP, Harith HH, Bobryshev YV, Schoppet M, Kavurma MM (2013) TRAIL-deficiency accelerates vascular calcification in atherosclerosis via modulation of RANKL. PLoS One 8(9):e74211. https://doi.org/10.1371/journal.pone.0074211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Haka AS, Singh RK, Grosheva I, Hoffner H, Capetillo-Zarate E, Chin HF, Anandasabapathy N, Maxfield FR (2015) Monocyte-derived dendritic cells upregulate extracellular catabolism of aggregated low-density lipoprotein on maturation, leading to foam cell formation. Arterioscler Thromb Vasc Biol 35(10):2092–2103. https://doi.org/10.1161/ATVBAHA.115.305843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Salvatore G, Bernoud-Hubac N, Bissay N, Debard C, Daira P, Meugnier E, Proamer F, Hanau D, Vidal H, Aricò M, Delprat C, Mahtouk K (2015) Human monocyte-derived dendritic cells turn into foamy dendritic cells with IL-17A. J Lipid Res 56(6):1110–1122. https://doi.org/10.1194/jlr.M054874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Iborra S, González-Granado JM (2015) In vitro differentiation of naïve CD4+ T cells: a tool for understanding the development of atherosclerosis. Methods Mol Biol 1339:177–189. https://doi.org/10.1007/978-1-4939-2929-0_12

    Article  CAS  PubMed  Google Scholar 

  90. Cochain C, Koch M, Chaudhari SM, Busch M, Pelisek J, Boon L, Zernecke A (2015) CD8+ T cells regulate monopoiesis and circulating Ly6C-high monocyte levels in atherosclerosis in mice. Circ Res 117(3):244–253. https://doi.org/10.1161/CIRCRESAHA.117.304611

    Article  CAS  PubMed  Google Scholar 

  91. Kyaw T, Tay C, Khan A, Dumouchel V, Cao A, To K, Kehry M, Dunn R, Agrotis A, Tipping P, Bobik A, Toh BH (2010) Conventional B2 B cell depletion ameliorates whereas its adoptive transfer aggravates atherosclerosis. J Immunol 185(7):4410–4419. https://doi.org/10.4049/jimmunol.1000033

    Article  CAS  PubMed  Google Scholar 

  92. Selathurai A, Deswaerte V, Kanellakis P, Tipping P, Toh BH, Bobik A, Kyaw T (2014) Natural killer (NK) cells augment atherosclerosis by cytotoxic-dependent mechanisms. Cardiovasc Res 102(1):128–137. https://doi.org/10.1093/cvr/cvu016

    Article  CAS  PubMed  Google Scholar 

  93. Tsoupras A, Lordan R, Harrington J, Pienaar R, Devaney K, Heaney S, Koidis A, Zabetakis I (2020) The effects of oxidation on the antithrombotic properties of tea lipids against PAF, thrombin, collagen, and ADP. Foods 9(4):385. https://doi.org/10.3390/foods9040385

    Article  CAS  PubMed Central  Google Scholar 

  94. Musunuru K, Sheikh F, Gupta RM, Houser SR, Maher KO, Milan DJ, Terzic A, Wu JC, Biology AHACoFGaT, Young CoCDit, Nursing aCoCaS (2018) Induced pluripotent stem cells for cardiovascular disease modeling and precision medicine: a scientific statement from the American Heart Association. Circ Genom Precis Med 11(1):e000043. https://doi.org/10.1161/HCG.0000000000000043

    Article  PubMed  PubMed Central  Google Scholar 

  95. Klein D (2018) iPSCs-based generation of vascular cells: reprogramming approaches and applications. Cell Mol Life Sci 75(8):1411–1433. https://doi.org/10.1007/s00018-017-2730-7

    Article  CAS  PubMed  Google Scholar 

  96. Noonan J, Grassia G, MacRitchie N, Garside P, Guzik TJ, Bradshaw AC, Maffia P (2019) A novel triple-cell two-dimensional model to study immune-vascular interplay in atherosclerosis. Front Immunol 10:849. https://doi.org/10.3389/fimmu.2019.00849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Mallone A, Stenger C, Von Eckardstein A, Hoerstrup SP, Weber B (2018) Biofabricating atherosclerotic plaques: in vitro engineering of a three-dimensional human fibroatheroma model. Biomaterials 150:49–59. https://doi.org/10.1016/j.biomaterials.2017.09.034

    Article  CAS  PubMed  Google Scholar 

  98. Gu X, Xie S, Hong D, Ding Y (2019) An in vitro model of foam cell formation induced by a stretchable microfluidic device. Sci Rep 9(1):7461. https://doi.org/10.1038/s41598-019-43902-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Robert J, Weber B, Frese L, Emmert MY, Schmidt D, von Eckardstein A, Rohrer L, Hoerstrup SP (2013) A three-dimensional engineered artery model for in vitro atherosclerosis research. PLoS One 8(11):e79821. https://doi.org/10.1371/journal.pone.0079821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lebedeva A, Vorobyeva D, Vagida M, Ivanova O, Felker E, Fitzgerald W, Danilova N, Gontarenko V, Shpektor A, Vasilieva E, Margolis L (2017) Ex vivo culture of human atherosclerotic plaques: a model to study immune cells in atherogenesis. Atherosclerosis 267:90–98. https://doi.org/10.1016/j.atherosclerosis.2017.10.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Getz GS, Reardon CA (2012) Animal models of atherosclerosis. Arterioscler Thromb Vasc Biol 32(5):1104–1115. https://doi.org/10.1161/ATVBAHA.111.237693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Emini Veseli B, Perrotta P, De Meyer GRA, Roth L, Van der Donckt C, Martinet W, De Meyer GRY (2017) Animal models of atherosclerosis. Eur J Pharmacol 816:3–13. https://doi.org/10.1016/j.ejphar.2017.05.010

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the British Heart Foundation for financial support (grants PG/16/25/32097 and FS/17/75/33257). AI and FA received PhD studentships from the Kingdom of Saudi Arabia; JC received PhD studentship from China Scholarship Council; and SA received PhD studentship from Oman Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipak P. Ramji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ramji, D.P., Ismail, A., Chen, J., Alradi, F., Al Alawi, S. (2022). Survey of In Vitro Model Systems for Investigation of Key Cellular Processes Associated with Atherosclerosis. In: Ramji, D. (eds) Atherosclerosis. Methods in Molecular Biology, vol 2419. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1924-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1924-7_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1923-0

  • Online ISBN: 978-1-0716-1924-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics