Skip to main content

Development of a Ligation-Independent Cloning-Based Dual Vector System for RNA Interference in Plants

  • Protocol
  • First Online:
Plant Gene Silencing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2408))

  • 924 Accesses

Abstract

RNA interference (RNAi) is an evolutionarily conserved post-transcriptional gene silencing mechanism that responds to double-stranded RNA (dsRNA) by sequence-specific downregulation of target genes. The dsRNA-mediated RNAi technology has become one of the most widely used and powerful tools for functional genomic studies in diverse organisms. However, its application has been limited due to the technical difficulty of making RNAi constructs caused by the inverted repeat structure that is required for the formation of hairpin RNA. Here, we present a ligation-independent cloning-based dual vector-mediated RNAi system for silencing specific genes in plants. This approach is simple, efficient, and cost-effective and can be readily adapted to other binary vectors for functional analysis of target genes and the development of sustainable disease and pest control strategies in a broad range of plant species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M et al (2008) Widespread translational inhibition by plant miRNAs and siRNAs. Science 320(5880):1185–1190

    Article  CAS  PubMed  Google Scholar 

  2. Waterhouse PM, Helliwell CA (2003) Exploring plant genomes by RNA-induced gene silencing. Nat Rev Genet 4(1):29–38

    Article  CAS  PubMed  Google Scholar 

  3. Kim Y-S, Lee Y-H, Kim H-S et al (2008) Development of patatin knockdown potato tubers using RNA interference (RNAi) technology, for the production of human-therapeutic glycoproteins. BMC Biotechnol 8(1):36

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hamilton A, Voinnet O, Chappell L et al (2002) Two classes of short interfering RNA in RNA silencing. EMBO J 21(17):4671–4679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wuriyanghan H, Falk BW (2013) RNA interference towards the potato psyllid, Bactericera cockerelli, is induced in plants infected with recombinant tobacco mosaic virus (TMV). PLoS One 8(6):e66050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sun K, Wolters A-MA, Vossen JH et al (2016) Silencing of six susceptibility genes results in potato late blight resistance. Transgenic Res 25(5):731–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rosa C, Kuo Y-W, Wuriyanghan H et al (2018) RNA interference mechanisms and applications in plant pathology. Annu Rev Phytopathol 56(1):581–610

    Article  CAS  PubMed  Google Scholar 

  8. Zhang J, Khan SA, Heckel DG et al (2017) Next-generation insect-resistant plants: RNAi-mediated crop protection. Trends Biotechnol 35(9):871–882

    Article  CAS  PubMed  Google Scholar 

  9. Watson JM, Fusaro AF, Wang M et al (2005) RNA silencing platforms in plants. FEBS Lett 579(26):5982–5987

    Article  CAS  PubMed  Google Scholar 

  10. Guo Q, Liu Q, Smith NA et al (2016) RNA silencing in plants: mechanisms, technologies and applications in horticultural crops. Curr Genomics 17(6):476–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Stoutjesdijk PA, Singh SP, Liu Q et al (2002) hpRNA-mediated targeting of the Arabidopsis FAD2 gene gives highly efficient and stable silencing. Plant Physiol 129(4):1723–1731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Travella S, Klimm TE, Keller B (2006) RNA interference-based gene silencing as an efficient tool for functional genomics in Hexaploid bread wheat. Plant Physiol 142(1):6–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wesley SV, Helliwell CA, Smith NA et al (2001) Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J 27(6):581–590

    Article  CAS  PubMed  Google Scholar 

  14. Smith NA, Singh SP, Wang M-B et al (2000) Total silencing by intron-spliced hairpin RNAs. Nature 407(6802):319–320

    Article  CAS  PubMed  Google Scholar 

  15. Helliwell C, Waterhouse P (2003) Constructs and methods for high-throughput gene silencing in plants. Methods 30(4):289–295

    Article  CAS  PubMed  Google Scholar 

  16. Wielopolska A, Townley H, Moore I et al (2005) A high-throughput inducible RNAi vector for plants. Plant Biotechnol J 3(6):583–590

    Article  CAS  PubMed  Google Scholar 

  17. Miki D, Shimamoto K (2004) Simple RNAi vectors for stable and transient suppression of gene function in Rice. Plant Cell Physiol 45(4):490–495

    Article  CAS  PubMed  Google Scholar 

  18. Yan P, Shen W, Gao X et al (2012) High-throughput construction of intron-containing hairpin RNA vectors for RNAi in plants. PLoS One 7(5):e38186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xu G, Sui N, Tang Y et al (2010) One-step, zero-background ligation-independent cloning intron-containing hairpin RNA constructs for RNAi in plants. New Phytol 187(1):240–250

    Article  CAS  PubMed  Google Scholar 

  20. Jiang Y, Xie M, Zhu Q et al (2013) One-step cloning of intron-containing hairpin RNA constructs for RNA interference via isothermal in vitro recombination system. Planta 238(2):325–330

    Article  CAS  PubMed  Google Scholar 

  21. Sha A, Zhao J, Yin K et al (2014) Virus-based microRNA silencing in plants. Plant Physiol 164(1):36–47

    Article  CAS  PubMed  Google Scholar 

  22. Liu Y, Schiff M, Serino G et al (2002) Role of SCF ubiquitin-ligase and the COP9 signalosome in the N gene–mediated resistance response to tobacco mosaic virus. Plant Cell 14(7):1483–1496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Barrell PJ, Yongjin S, Cooper PA et al (2002) Alternative selectable markers for potato transformation using minimal T-DNA vectors. Plant Cell Tissue Organ Cult 70(1):61–68

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a startup fund from the Texas A&M AgriLife Research and a Hatch Project from the USDA National Institute of Food and Agriculture to JS (TEX0-1-9675). We thank Dr. Yule Liu for providing the pYL41 and pRNAi-LIC vectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junqi Song .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhao, J., Rios, C.G., Xu, J., Ahmad, I., Song, J. (2022). Development of a Ligation-Independent Cloning-Based Dual Vector System for RNA Interference in Plants. In: Mysore, K.S., Senthil-Kumar, M. (eds) Plant Gene Silencing. Methods in Molecular Biology, vol 2408. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1875-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1875-2_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1874-5

  • Online ISBN: 978-1-0716-1875-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics