Skip to main content

Two-Tiered Selection and Screening Strategy to Increase Functional Enzyme Production in E. coli

  • Protocol
  • First Online:
Insoluble Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2406))

Abstract

Development of recombinant enzymes as industrial biocatalysts or metabolic pathway elements requires soluble expression of active protein. Here we present a two-step strategy, combining a directed evolution selection with an enzyme activity screen, to increase the soluble production of enzymes in the cytoplasm of E. coli. The directed evolution component relies on the innate quality control of the twin-arginine translocation pathway coupled with antibiotic selection to isolate point mutations that promote intracellular solubility. A secondary screen is applied to ensure the solubility enhancement has not compromised enzyme activity. This strategy has been successfully applied to increase the soluble production of a fungal endocellulase by 30-fold in E. coli without change in enzyme specific activity through two rounds of directed evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Singh R, Kumar M, Mittal A et al (2016) Microbial enzymes: industrial progress in 21st century. 3 Biotech 6(2):174

    Article  PubMed  PubMed Central  Google Scholar 

  2. Chapman J, Ismail AE, Dinu CZ (2018) Industrial applications of enzymes: recent advances, techniques, and outlooks. Catalysts 8(6):238

    Article  CAS  Google Scholar 

  3. Kunjapur AM, Pfingstag P, Thompson NC (2018) Gene synthesis allows biologists to source genes from farther away in the tree of life. Nat Commun 9(1):4425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wiltschi B, Cernava T, Dennig A et al (2020) Enzymes revolutionize the bioproduction of value-added compounds: from enzyme discovery to special applications. Biotechnol Adv 40:107520

    Article  CAS  PubMed  Google Scholar 

  5. Smanski MJ, Zhou H, Claesen J et al (2016) Synthetic biology to access and expand nature’s chemical diversity. Nat Rev Microbiol 14(3):135–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Erb TJ, Jones PR, Bar-Even A (2017) Synthetic metabolism: metabolic engineering meets enzyme design. Curr Opin Chem Biol 37:56–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brondyk WH (2009) Selecting an appropriate method for expressing a recombinant protein. Methods Enzymol 463:131–147

    Article  CAS  PubMed  Google Scholar 

  8. Ziemert N, Alanjary M, Weber T (2016) The evolution of genome mining in microbes - a review. Nat Prod Rep 33(8):988–1005

    Article  CAS  PubMed  Google Scholar 

  9. Yan Q, Fong SS (2017) Challenges and advances for genetic engineering of non-model bacteria and uses in consolidated bioprocessing. Front Microbiol 8:2060

    Article  PubMed  PubMed Central  Google Scholar 

  10. Liu L, Yang H, Shin HD et al (2013) How to achieve high-level expression of microbial enzymes: strategies and perspectives. Bioengineered 4(4):212–223

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bundy BC, Hunt JP, Jewett MC et al (2018) Cell-free biomanufacturing. Curr Opin Chem Eng 22:177–183

    Article  Google Scholar 

  12. Makino T, Skretas G, Georgiou G (2011) Strain engineering for improved expression of recombinant proteins in bacteria. Microb Cell Factories 10:32

    Article  CAS  Google Scholar 

  13. Ferrer-Miralles N, Saccardo P, Corchero JL et al (2015) General introduction: recombinant protein production and purification of insoluble proteins. Methods Mol Biol 1258:1–24

    Article  CAS  PubMed  Google Scholar 

  14. Sorensen HP, Mortensen KK (2005) Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli. Microb Cell Factories 4(1):1

    Article  CAS  Google Scholar 

  15. Baneyx F (1999) Recombinant protein expression in Escherichia coli. Curr Opin Biotechnol 10(5):411–421

    Article  CAS  PubMed  Google Scholar 

  16. Terpe K (2006) Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 72(2):211–222

    Article  CAS  PubMed  Google Scholar 

  17. Rosano GL, Ceccarelli EA (2014) Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol 5:172

    PubMed  PubMed Central  Google Scholar 

  18. Gupta SK, Shukla P (2016) Advanced technologies for improved expression of recombinant proteins in bacteria: perspectives and applications. Crit Rev Biotechnol 36(6):1089–1098

    Article  CAS  PubMed  Google Scholar 

  19. Eijsink VG, Bjork A, Gaseidnes S et al (2004) Rational engineering of enzyme stability. J Biotechnol 113(1–3):105–120

    Article  CAS  PubMed  Google Scholar 

  20. Sachsenhauser V, Bardwell JC (2018) Directed evolution to improve protein folding in vivo. Curr Opin Struct Biol 48:117–123

    Article  CAS  PubMed  Google Scholar 

  21. Fisher AC, DeLisa MP (2004) A little help from my friends: quality control of presecretory proteins in bacteria. J Bacteriol 186(22):7467–7473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fisher AC, Kim W, DeLisa MP (2006) Genetic selection for protein solubility enabled by the folding quality control feature of the twin-arginine translocation pathway. Protein Sci 15(3):449–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fisher AC, DeLisa MP (2009) Efficient isolation of soluble intracellular single-chain antibodies using the twin-arginine translocation machinery. J Mol Biol 385(1):299–311

    Article  CAS  PubMed  Google Scholar 

  24. Klesmith JR, Bacik JP, Wrenbeck EE et al (2017) Trade-offs between enzyme fitness and solubility illuminated by deep mutational scanning. Proc Natl Acad Sci U S A 114(9):2265–2270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. An WF, Tolliday NJ (2009) Introduction: cell-based assays for high-throughput screening. Methods Mol Biol 486:1–12

    Article  CAS  PubMed  Google Scholar 

  26. Boock JT, Gupta A, Prather K (2015) Screening and modular design for metabolic pathway optimization. Curr Opin Biotechnol 36:189–198

    Article  CAS  PubMed  Google Scholar 

  27. Denard CA, Ren H, Zhao H (2015) Improving and repurposing biocatalysts via directed evolution. Curr Opin Chem Biol 25:55–64

    Article  CAS  PubMed  Google Scholar 

  28. Longwell CK, Labanieh L, Cochran JR (2017) High-throughput screening technologies for enzyme engineering. Curr Opin Biotechnol 48:196–202

    Article  CAS  PubMed  Google Scholar 

  29. Boock JT, King BC, Taw MN et al (2015) Repurposing a bacterial quality control mechanism to enhance enzyme production in living cells. J Mol Biol 427(6 Pt B):1451–1463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. DeLisa MP, Tullman D, Georgiou G (2003) Folding quality control in the export of proteins by the bacterial twin-arginine translocation pathway. Proc Natl Acad Sci U S A 100(10):6115–6120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. King BC, Donnelly MK, Bergstrom GC et al (2009) An optimized microplate assay system for quantitative evaluation of plant cell wall-degrading enzyme activity of fungal culture extracts. Biotechnol Bioeng 102(4):1033–1044

    Article  CAS  PubMed  Google Scholar 

  32. Fisher AC, Kim JY, Perez-Rodriguez R et al (2008) Exploration of twin-arginine translocation for expression and purification of correctly folded proteins in Escherichia coli. Microb Biotechnol 1(5):403–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fromant M, Blanquet S, Plateau P (1995) Direct random mutagenesis of gene-sized DNA fragments using polymerase chain reaction. Anal Biochem 224(1):347–353

    Article  CAS  PubMed  Google Scholar 

  34. Farrow MF, Arnold FH (2011) High throughput screening of fungal endoglucanase activity in Escherichia coli. J Vis Exp 54:e2942

    Google Scholar 

  35. Romero PA, Arnold FH (2009) Exploring protein fitness landscapes by directed evolution. Nat Rev Mol Cell Biol 10(12):866–876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by a USDA NIFA Grant # 2009-02202 (D.M.G and M.P.D.), an NSF GK-12 “Grass Roots” Fellowship under Grant # DGE-1045513 (J.T.B.), and Miami University Assistant Professor start-up funds (J.T.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason T. Boock .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Boock, J.T., Taw, M., King, B.C., Conrado, R.J., Gibson, D.M., DeLisa, M.P. (2022). Two-Tiered Selection and Screening Strategy to Increase Functional Enzyme Production in E. coli. In: Garcia Fruitós, E., Arís Giralt, A. (eds) Insoluble Proteins. Methods in Molecular Biology, vol 2406. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1859-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1859-2_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1858-5

  • Online ISBN: 978-1-0716-1859-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics