Skip to main content

Measuring Voltage–Current Characteristics of Tethered Bilayer Lipid Membranes to Determine the Electro-Insertion Properties of Analytes

  • Protocol
  • First Online:
Membrane Lipids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2402))

  • 862 Accesses

Abstract

Tethered bilayer lipid membranes (tBLMs) anchored to a solid substrate can be prepared and individual triangular voltage ramps from zero to 500 mV with a period of 2–10 ms applied to give membrane voltage dependencies with and without the addition of drugs and analytes in order to measure their electro-insertion properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cranfield C, Carne S, Martinac B, Cornell B (2015) The assembly and use of tethered bilayer lipid membranes (tBLMs). In: Methods in membrane lipids. Springer, New York, pp 45–53

    Google Scholar 

  2. Cornell BA, Braach-Maksvytis V, King L, Osman P, Raguse B, Wieczorek L, Pace R (1997) A biosensor that uses ion-channel switches. Nature 387(6633):580–583

    Article  CAS  Google Scholar 

  3. Vasilkoski Z (2006) The effect of electric fields on lipid membranes. arXiv preprint physics/0701013

    Google Scholar 

  4. Winterhalter M (2014) Lipid membranes in external electric fields: kinetics of large pore formation causing rupture. Adv Colloid Interf Sci 208:121–128

    Article  CAS  Google Scholar 

  5. Heimburg T (2012) The capacitance and electromechanical coupling of lipid membranes close to transitions: the effect of electrostriction. Biophys J 103(5):918–929

    Article  CAS  Google Scholar 

  6. Alobeedallah H, Cornell B, Coster H (2020) The effect of cholesterol on the voltage–current characteristics of tethered lipid membranes. J Membr Biol 253(4):319–330

    Article  CAS  Google Scholar 

  7. Oliver LD, Coster HG (2003) Electrical breakdown of human erythrocytes: a technique for the study of electro-haemolysis. Bioelectrochemistry 61(1–2):9–19

    Article  CAS  Google Scholar 

  8. Cranfield CG, Cornell BA, Grage SL, Duckworth P, Carne S, Ulrich AS, Martinac B (2014) Transient potential gradients and impedance measures of tethered bilayer lipid membranes: pore-forming peptide insertion and the effect of electroporation. Biophys J 106(1):182–189

    Article  CAS  Google Scholar 

  9. Su Z, Shodiev M, Leitch JJ, Abbasi F, Lipkowski J (2018) Role of transmembrane potential and defects on the permeabilization of lipid bilayers by alamethicin, an ion-channel-forming peptide. Langmuir 34(21):6249–6260

    Article  CAS  Google Scholar 

  10. Raffy S, Teissié J (1999) Control of lipid membrane stability by cholesterol content. Biophys J 76(4):2072–2080. https://doi.org/10.1016/S0006-3495(99)77363-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tung L, Troiano GC, Sharma V, Raphael RM, Stebe KJ (1999) Changes in electroporation thresholds of lipid membranes by surfactants and peptides. Ann N Y Acad Sci 888(1):249–265. https://doi.org/10.1111/j.1749-6632.1999.tb07960.x

    Article  CAS  PubMed  Google Scholar 

  12. Rols MP, Teissié J (1990) Electropermeabilization of mammalian cells. Quantitative analysis of the phenomenon. Biophys J 58(5):1089–1098. https://doi.org/10.1016/S0006-3495(90)82451-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wolf H, Rols MP, Boldt E, Neumann E, Teissié J (1994) Control by pulse parameters of electric field-mediated gene transfer in mammalian cells. Biophys J 66(2, part 1):524–531. https://doi.org/10.1016/S0006-3495(94)80805-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lebar AM, Kopitar NA, Ihan A, Serŝa G, Miklavĉiĉ D (1998) Significance of treatment energy in cell electropermeabilization. Electro Magnetobiol 17(2):255–262. https://doi.org/10.3109/15368379809022570

    Article  Google Scholar 

  15. Hoiles W, Krishnamurthy V, Cranfield Charles G, Cornell B (2014) An engineered membrane to measure electroporation: effect of tethers and bioelectronic interface. Biophys J 107(6):1339–1351. https://doi.org/10.1016/j.bpj.2014.07.056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadeel Alobeedallah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Alobeedallah, H., Cornell, B.A., Coster, H. (2022). Measuring Voltage–Current Characteristics of Tethered Bilayer Lipid Membranes to Determine the Electro-Insertion Properties of Analytes. In: Cranfield, C.G. (eds) Membrane Lipids. Methods in Molecular Biology, vol 2402. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1843-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1843-1_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1842-4

  • Online ISBN: 978-1-0716-1843-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics