Skip to main content

Sample-to-Answer Microfluidic Nucleic Acid Testing (NAT) on Lab-on-a-Disc for Malaria Detection at Point of Need

  • Protocol
  • First Online:
Biomedical Engineering Technologies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2393))

Abstract

One of the grand challenges for field-deployable NATs is related to the front end of the assays—nucleic acid extraction from raw samples. The ideal nucleic acid sample preparation should be simple, scalable, and easy-to-operate. In this chapter, we present a lab-on-a-disc NAT device for sample-to-answer malaria diagnosis. The parasite DNA sample preparation and subsequent real-time LAMP detection are seamlessly integrated on a disposable single microfluidic compact disc, driven by energy-efficient, non–centrifuge-based magnetic field interactions. Each disc contains four parallel testing units, which could be configured either as four identical tests or as four species-specific tests. When configured as species-specific tests, it could identify two of the most life-threatening malaria species (P. falciparum and P. vivax). The reagent disc with a 4-plex analyzer (discussed in Chapter 1) is capable of processing four samples simultaneously with 40 min turnaround time. It achieves a detection limit of ~0.5 parasites/μl for whole blood, sufficient for detecting asymptomatic parasite carriers. The assay is performed with an automated device described in Chapter 14. The combination of sensitivity, specificity, cost, and scalable sample preparation suggests the real-time fluorescence LAMP device could be particularly useful for malaria screening in field settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Slater HC, Ross A, Ouedraogo AL et al (2015) Assessing the impact of next-generation rapid diagnostic tests on Plasmodium falciparum malaria elimination strategies. Nature 528(7580):S94–S101

    PubMed  Google Scholar 

  2. Wongsrichanalai C, Barcus MJ, Muth S et al (2007) A review of malaria diagnostic tools: microscopy and rapid diagnostic test (RDT). Am J Trop Med Hyg 77(6):119–127

    PubMed  Google Scholar 

  3. Moody A (2002) Rapid diagnostic tests for malaria parasites. Clin Microbiol Rev 15(1):66–78

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Snounou G, Viriyakosol S, Zhu XP et al (1993) High-sensitivity of detection of human malaria parasites by the use of nested polymerase chain-reaction. Mol Biochem Parasit 61(2):315–320

    CAS  Google Scholar 

  5. Han ET, Watanabe R, Sattabongkot J et al (2007) Detection of four plasmodium species by genus- and species-specific loop-mediated isothermal amplification for clinical diagnosis. J Clin Microbiol 45(8):2521–2528

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Reddy V, Ravi V, Desai A et al (2012) Utility of IgM ELISA, TaqMan real-time PCR, reverse transcription PCR, and RT-LAMP assay for the diagnosis of chikungunya fever. J Med Virol 84(11):1771–1778

    CAS  PubMed  Google Scholar 

  7. Britton S, Cheng Q, McCarthy JS (2016) Novel molecular diagnostic tools for malaria elimination: a review of options from the point of view of high-throughput and applicability in resource limited settings. Malar J 15(1):88

    PubMed  PubMed Central  Google Scholar 

  8. Oriero EC, van Geertruyden JP, Nwakanma DC et al (2015) Novel techniques and future directions in molecular diagnosis of malaria in resource-limited settings. Expert Rev Mol Diagn 15(11):1419–1426

    PubMed  Google Scholar 

  9. Goyal K, Kaur H, Sehgal A et al (2015) RealAmp loop-mediated isothermal amplification as a point-of-care test for diagnosis of malaria: neither too close nor too far. J Infect Dis 211(10):1686

    PubMed  Google Scholar 

  10. Morris U, Khamis M, Aydin-Schmidt B et al (2015) Field deployment of loop-mediated isothermal amplification for centralized mass-screening of asymptomatic malaria in Zanzibar: a pre-elimination setting. Malar J 14:205

    PubMed  PubMed Central  Google Scholar 

  11. Hsiang MS, Greenhouse B, Rosenthal PJ (2014) Point of care testing for malaria using LAMP, loop mediated isothermal amplification. J Infect Dis 210(8):1167–1169

    PubMed  Google Scholar 

  12. Patel JC, Lucchi NW, Srivastava P et al (2014) Field evaluation of a real-time fluorescence loop-mediated isothermal amplification assay, RealAmp, for the diagnosis of malaria in Thailand and India. J Infect Dis 210(8):1180–1187

    PubMed  PubMed Central  Google Scholar 

  13. Han ET (2013) Loop-mediated isothermal amplification test for the molecular diagnosis of malaria. Expert Rev Mol Diagn 13(2):205–218

    CAS  PubMed  Google Scholar 

  14. Singh R, Savargaonkar D, Bhatt R et al (2013) Rapid detection of Plasmodium vivax in saliva and blood using loop mediated isothermal amplification (LAMP) assay. J Infect 67(3):245–247

    PubMed  Google Scholar 

  15. Surabattula R, Vejandla MP, Mallepaddi PC et al (2013) Simple, rapid, inexpensive platform for the diagnosis of malaria by loop mediated isothermal amplification (LAMP). Exp Parasitol 134(3):333–340

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Sirichaisinthop J, Buates S, Watanabe R et al (2011) Evaluation of loop-mediated isothermal amplification (LAMP) for malaria diagnosis in a field setting. Am J Trop Med Hyg 85(4):594–596

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Sattabongkot J, Tsuboi T, Han ET et al (2014) Loop-mediated isothermal amplification assay for rapid diagnosis of malaria infections in an area of endemicity in Thailand. J Clin Microbiol 52(5):1471–1477

    PubMed  PubMed Central  Google Scholar 

  18. Kersting S, Rausch V, Bier FF et al (2014) Rapid detection of Plasmodium falciparum with isothermal recombinase polymerase amplification and lateral flow analysis. Malar J 13:99

    PubMed  PubMed Central  Google Scholar 

  19. Cordray MS, Richards-Kortum RR (2015) A paper and plastic device for the combined isothermal amplification and lateral flow detection of plasmodium DNA. Malar J 14:472

    PubMed  PubMed Central  Google Scholar 

  20. Li Y, Kumar N, Gopalakrishnan A et al (2013) Detection and species identification of malaria parasites by isothermal, tHDA amplification directly from human blood without sample preparation. J Mol Diagn 15(5):634–641

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu Q, Nam J, Kim S et al (2016) Two-stage sample-to-answer system based on nucleic acid amplification approach for detection of malaria parasites. Biosens Bioelectron 82:1–8

    PubMed  Google Scholar 

  22. Xu G, Nolder D, Reboud J et al (2016) Paper-origami-based multiplexed malaria diagnostics from whole blood. Angew Chem 55(49):15250–15253

    CAS  Google Scholar 

  23. Lucchi NW, Gaye M, Diallo MA et al (2016) Evaluation of the Illumigene malaria LAMP: a robust molecular diagnostic tool for malaria parasites. Sci Rep 6:36808. https://doi.org/10.1038/srep36808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dineva MA, MahiLum-Tapay L, Lee H (2007) Sample preparation: a challenge in the development of point-of-care nucleic acid-based assays for resource-limited settings. Analyst 132(12):1193–1199

    CAS  PubMed  Google Scholar 

  25. Kolluri N, Klapperich CM, Cabodi M (2018) Towards lab-on-a-chip diagnostics for malaria elimination. Lab Chip 18:75–94

    CAS  Google Scholar 

  26. Sema M, Alemu A, Bayih AG et al (2015) Evaluation of non-instrumented nucleic acid amplification by loop-mediated isothermal amplification (NINA-LAMP) for the diagnosis of malaria in Northwest Ethiopia. Malar J 14:44. https://doi.org/10.1186/s12936-12015-10559-12939

    Article  PubMed  PubMed Central  Google Scholar 

  27. Reboud J, Xu G, Garrett A et al (2019) Paper-based microfluidics for DNA diagnostics of malaria in low resource underserved rural communities. Proc Natl Acad Sci U S A 116(11):4834–4842

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Phillips EA, Moehling TJ, Ejendal KFK et al (2019) Microfluidic rapid and autonomous analytical device (microRAAD) to detect HIV from whole blood samples. Lab Chip 19(20):3375–3386

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Stumpf F, Schwemmer F, Hutzenlaub T et al (2016) LabDisk with complete reagent prestorage for sample-to-answer nucleic acid based detection of respiratory pathogens verified with influenza a H3N2 virus. Lab Chip 16(1):199–207

    CAS  PubMed  Google Scholar 

  30. Gorkin R, Park J, Siegrist J et al (2010) Centrifugal microfluidics for biomedical applications. Lab Chip 10(14):1758–1773

    CAS  PubMed  Google Scholar 

  31. Sun Y, Quyen TL, Hung TQ et al (2015) A lab-on-a-chip system with integrated sample preparation and loop-mediated isothermal amplification for rapid and quantitative detection of salmonella spp. in food samples. Lab Chip 15(8):1898–1904

    CAS  PubMed  Google Scholar 

  32. Chiu DT, deMello AJ, Di Carlo D et al (2017) Small but perfectly formed? Successes, challenges, and opportunities for microfluidics in the chemical and biological sciences. Chem 2(2):201–223

    CAS  Google Scholar 

  33. Wang Z, Zheng H, Lim C et al (2009) Polymer hydrophilicity and hydrophobicity induced by femtosecond laser direct irradiation. Appl Phys Lett 95(11):111110

    Google Scholar 

  34. Gao LC, McCarthy TJ (2006) Contact angle hysteresis explained. Langmuir 22(14):6234–6237

    CAS  PubMed  Google Scholar 

  35. Oner D, McCarthy TJ (2000) Ultrahydrophobic surfaces. Effects of topography length scales on wettability. Langmuir 16(20):7777–7782

    Google Scholar 

  36. Madou M, Zoval J, Jia GY et al (2006) Lab on a CD. Annu Rev Biomed Eng 8:601–628

    CAS  PubMed  Google Scholar 

  37. Kim TH, Park J, Kim CJ et al (2014) Fully integrated lab-on-a-disc for nucleic acid analysis of food-borne pathogens. Anal Chem 86(8):3841–3848

    CAS  PubMed  Google Scholar 

  38. Nolte DD (2009) Invited review article: review of centrifugal microfluidic and bio-optical disks. Rev Sci Instrum 80(10):101101

    PubMed  PubMed Central  Google Scholar 

  39. Kong LX, Perebikovsky A, Moebius J et al (2016) Lab-on-a-CD: a fully integrated molecular diagnostic system. J Lab Autom 21(3):323–355

    PubMed  Google Scholar 

  40. Notomi T, Okayama H, Masubuchi H et al (2000) Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28(12):E63

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Polley SD, Mori Y, Watson J et al (2010) Mitochondrial DNA targets increase sensitivity of malaria detection using loop-mediated isothermal amplification. J Clin Microbiol 48(8):2866–2871

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Britton S, Cheng Q, Grigg MJ et al (2016) Sensitive detection of Plasmodium vivax using a high-throughput, Colourimetric loop mediated isothermal amplification (HtLAMP) platform: a potential novel tool for malaria elimination. PLoS Negl Trop Dis 10(2):e0004443

    PubMed  PubMed Central  Google Scholar 

  43. Long GL, Winefordner JD (1983) Limit of detection. A closer look at the IUPAC definition. Anal Chem 55(7):712A–724A

    CAS  Google Scholar 

  44. WHO (2017) World Malaria Report 2017. 1-196

    Google Scholar 

  45. Vallejo AF, Martinez NL, Gonzalez IJ et al (2015) Evaluation of the loop mediated isothermal DNA amplification (LAMP) kit for malaria diagnosis in P. vivax endemic settings of Colombia. PLoS Negl Trop Dis 9(1):e3453

    PubMed  PubMed Central  Google Scholar 

  46. Modak SS, Barber CA, Geva E et al (2016) Rapid point-of-care isothermal amplification assay for the detection of malaria without nucleic acid purification. Infect Dis 9:1–9

    Google Scholar 

  47. Hopkins H, Gonzalez IJ, Polley SD et al (2013) Highly sensitive detection of malaria parasitemia in a malaria-endemic setting: performance of a new loop-mediated isothermal amplification kit in a remote clinic in Uganda. J Infect Dis 208(4):645–652

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Katevatis C, Fan A, Klapperich CM (2017) Low concentration DNA extraction and recovery using a silica solid phase. PLoS One 12(5):e0176848

    PubMed  PubMed Central  Google Scholar 

  49. Wilson IG (1997) Inhibition and facilitation of nucleic acid amplification. Appl Environ Microb 63(10):3741–3751

    CAS  Google Scholar 

  50. Choi G, Song D, Shrestha S et al (2016) A field-deployable mobile molecular diagnostic system for malaria at the point of need. Lab Chip 16(22):4341–4349

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Choi G, Prince T, Miao J et al (2018) Sample-to-answer palm-sized nucleic acid testing device towards low-cost malaria mass screening. Biosens Bioelectron 115:83–90

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants National Science Foundation under Grant No. 1710831, 1912410, and 1902503. We express our gratitude to Dr. Liwang Cui, Dr. Jun Miao, and Xiaolian Li for providing malaria samples. The following reagent is obtained through BEI Resources Repository, NIAID, NIH: Plasmodium vivax, Strain Chesson, MRA-383, and strain Achiote, MRA-369, contributed by W. E. Collins. W.G. acknowledges the support from Penn State Startup Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihua Guan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Choi, G., Guan, W. (2022). Sample-to-Answer Microfluidic Nucleic Acid Testing (NAT) on Lab-on-a-Disc for Malaria Detection at Point of Need. In: Ossandon, M.R., Baker, H., Rasooly, A. (eds) Biomedical Engineering Technologies. Methods in Molecular Biology, vol 2393. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1803-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1803-5_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1802-8

  • Online ISBN: 978-1-0716-1803-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics