Skip to main content

Design of Oligonucleotides for Allele-Specific Amplification Based on PCR and Isothermal Techniques

  • Protocol
  • First Online:
PCR Primer Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2392))

Abstract

Single-nucleotide variations have been associated to various genetic diseases, variations on drug efficiency, and differences in cancer prognostics. The detection of these changes in nucleic acid sequences from patient samples is particularly useful for accurate diagnosis, therapeutics, and disease management. A reliable allele-specific amplification is still an important challenge for molecular-based diagnostic technologies. In the last years, allele-specific primers have been designed for promoting the enrichment of certain variants, based on a higher stability of primer/template duplexes. Also, several methods are based on the addition of a blocking oligonucleotide that prevent the amplification of a specific variant, enabling that other DNA variants can be observed. In this context, genotyping methods based on isothermal amplification techniques are increasing, especially those assays aimed to be deployed at point-of-care applications. The correct selection of target sequences is crucial for reaching the required analytical performances, in terms of reaction time, amplification yield, and selectivity. The present chapter describes the design criteria for the selection of primers and blockers for relevant PCR approaches and novel isothermal strategies. Several successful examples are provided in order to highlight the main design restrictions and the potential to be extended to other applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Karki R, Pandya D, Elston RC, Ferlini C (2015) Defining “mutation” and “polymorphism” in the era of personal genomics. BMC Med Genet 8(1):37

    Google Scholar 

  2. Růžička M, Kulhánek P, Radová L, Čechová A, Špačková N, Fajkusová L, Réblová K (2017) DNA mutation motifs in the genes associated with inherited diseases. PLoS One 12(8):e0182377

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Wu LR, Chen SX, Wu Y, Patel AA, Zhang DY (2017) Multiplexed enrichment of rare DNA variants via sequence-selective and temperature-robust amplification. Nat Biomed Eng 1(9):714–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rodríguez A, Rodríguez M, Córdoba JJ, Andrade MJ (2015) Design of primers and probes for quantitative real-time PCR methods. In: PCR primer design. Humana Press, New York, NY, pp 31–56

    Chapter  Google Scholar 

  5. Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 13(1):134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3—new capabilities and interfaces. Nucleic Acids Res 40(15):e115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Raymaekers M, Smets R, Maes B, Cartuyvels R (2009) Checklist for optimization and validation of real-time PCR assays. J Clin Lab Anal 23(3):145–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bustin S, Huggett J (2017) qPCR primer design revisited. Biomol Detect Quant 14:19–28

    CAS  Google Scholar 

  9. Neff MM, Turk E, Kalishman M (2002) Web-based primer design for single-nucleotide polymorphism analysis. Trends Genet 18(12):613–615

    Article  CAS  PubMed  Google Scholar 

  10. Tortajada-Genaro LA, Puchades R, Maquieira Á (2017) Primer design for SNP genotyping based on allele-specific amplification—application to organ transplantation pharmacogenomics. J Pharm Biomed Anal 136:14–21

    Article  CAS  PubMed  Google Scholar 

  11. Wangkumhang P, Chaichoompu K, Ngamphiw C, Ruangrit U, Chanprasert J, Assawamakin A, Tongsima S (2007) WASP: a web-based allele-specific PCR assay designing tool for detecting SNPs and mutations. BMC Genomics 8(1):1–9

    Article  CAS  Google Scholar 

  12. You FM, Huo N, Gu YQ, Luo MC, Ma Y, Hane D, Lazo GR, Dvorak J, Anderson OD (2008) BatchPrimer3: a high-throughput web application for PCR and sequencing primer design. BMC Bioinformatics 9(1):253

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Day JP, Barany F, Bergstrom D, Hammer RP (1999) Nucleotide analogs facilitate base conversion with 3′ mismatch primers. Nucleic Acids Res 27(8):1810–1818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Newton CR, Heptinstall LE, Summers C, Super M, Schwarz M, Anwar R, Graham A, Smith JC, Markham AF (1989) Amplification refractory mutation system for prenatal diagnosis and carrier assessment in cystic fibrosis. Lancet 334(8678–8679):1481–1483

    Article  Google Scholar 

  15. Little S (1995) Amplification-refractory mutation system (ARMS) analysis of point mutations. Curr Protoc Hum Genet 7(1):9–8

    Google Scholar 

  16. Luo JD, Chan EC, Shih CL, Chen TL, Liang Y, Hwang TL, Chiou CC (2006) Detection of rare mutant K-ras DNA in a single-tube reaction using peptide nucleic acid as both PCR clamp and sensor probe. Nucleic Acids Res 34(2):e12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Hao W, Fan L, Chen Q, Chen X, Zhang S, Lan K, Lu J, Zhang C (2015) Modified proofreading PCR for detection of point mutations, insertions and deletions using a ddNTP-blocked primer. PLoS One 10(4):e0123468

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Dominguez PL, Kolodney MS (2005) Wild-type blocking polymerase chain reaction for detection of single-nucleotide minority mutations from clinical specimens. Oncogene 24(45):6830–6834

    Article  CAS  PubMed  Google Scholar 

  19. Choi JJ, Jang M, Kim J, Park H (2010) Highly sensitive PNA array platform technology for single-nucleotide mismatch discrimination. J Microbiol Biotechnol 20(2):287–293

    Article  CAS  PubMed  Google Scholar 

  20. Zhang S, Chen Z, Huang C, Ding C, Li C, Chen J, Zhao J, Miao L (2019) Ultrasensitive and quantitative detection of EGFR mutations in plasma samples from patients with non-small-cell lung cancer using a dual PNA clamping-mediated LNA-PNA PCR clamp. Analyst 144(5):1718–1724

    Article  CAS  PubMed  Google Scholar 

  21. Latorra D, Campbell K, Wolter A, Hurley JM (2003) Enhanced allele-specific PCR discrimination in SNP genotyping using 3′ locked nucleic acid (LNA) primers. Hum Mutat 22(1):79–85

    Article  CAS  PubMed  Google Scholar 

  22. Craw P, Balachandran W (2012) Isothermal nucleic acid amplification technologies for point-of-care diagnostics: a critical review. Lab Chip 12(14):2469–2486

    Article  CAS  PubMed  Google Scholar 

  23. Tortajada-Genaro LA, Santiago-Felipe S, Maquieira A (2017) Isothermal nucleic acid amplification for food toxicity analyses. In: Analysis of food toxins and toxicants, vol 2. Wiley, Hoboken, New Jersey, p 103

    Chapter  Google Scholar 

  24. Mayboroda O, Katakis I, O’Sullivan CK (2018) Multiplexed isothermal nucleic acid amplification. Anal Biochem 545:20–30

    Article  CAS  PubMed  Google Scholar 

  25. Piepenburg O, Williams CH, Stemple DL, Armes NA (2006) DNA detection using recombination proteins. PLoS Biol 4(7):e204

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T (2000) Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28(12):e63–e63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fire A, Xu SQ (1995) Rolling replication of short DNA circles. Proc Natl Acad Sci 92(10):4641–4645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Higgins M, Ravenhall M, Ward D, Phelan J, Ibrahim A, Forrest MS, Clark TG, Campino S (2019) PrimedRPA: primer design for recombinase polymerase amplification assays. Bioinformatics 35(4):682–684

    Article  CAS  PubMed  Google Scholar 

  29. Torres C, Vitalis EA, Baker BR, Gardner SN, Torres MW, Dzenitis JM (2011) LAVA: an open-source approach to designing LAMP (loop-mediated isothermal amplification) DNA signatures. BMC Bioinformatics 12(1):240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang C, Chen X, Wu Y, Li H, Wang Y, Pan X, Tang T, Liu Z, Li X (2016) Lateral flow strip for visual detection of K-ras mutations based on allele-specific PCR. Biotechnol Lett 38(10):1709–1714

    Article  CAS  PubMed  Google Scholar 

  31. Semagn K, Babu R, Hearne S, Olsen M (2014) Single-nucleotide polymorphism genotyping using Kompetitive Allele-Specific PCR (KASP): overview of the technology and its application in crop improvement. Mol Breed 33(1):1–14

    Article  CAS  Google Scholar 

  32. Tortajada-Genaro LA, Mena S, Niñoles R, Puigmule M, Viladevall L, Maquieira Á (2016) Genotyping of single-nucleotide polymorphisms related to attention-deficit hyperactivity disorder. Anal Bioanal Chem 408(9):2339–2345

    Article  CAS  PubMed  Google Scholar 

  33. Yamanaka ES, Tortajada-Genaro LA, Maquieira Á (2017) Low-cost genotyping method based on allele-specific recombinase polymerase amplification and colorimetric microarray detection. Microchim Acta 184(5):1453–1462

    Article  CAS  Google Scholar 

  34. Martorell S, Palanca S, Maquieira Á, Tortajada-Genaro LA (2018) Blocked recombinase polymerase amplification for mutation analysis of PIK3CA gene. Anal Biochem 544:49–56

    Article  CAS  PubMed  Google Scholar 

  35. Martorell S, Tortajada-Genaro LA, Maquieira Á (2019) Magnetic concentration of allele-specific products from recombinase polymerase amplification. Anal Chim Acta 1092:49–56

    Article  CAS  PubMed  Google Scholar 

  36. Zhang L, Zhang Y, Wang C, Feng Q, Fan F, Zhang G, Kang X, Qin X, Sun J, Li Y, Jiang X (2014) Integrated microcapillary for sample-to-answer nucleic acid pretreatment, amplification, and detection. Anal Chem 86(20):10461–10466

    Article  CAS  PubMed  Google Scholar 

  37. Yongkiettrakul S, Kampeera J, Chareanchim W, Rattanajak R, Pornthanakasem W, Kiatpathomchai W, Kongkasuriyachai D (2017) Simple detection of single-nucleotide polymorphism in Plasmodium falciparum by SNP-LAMP assay combined with lateral flow dipstick. Parasitol Int 66(1):964–971

    Article  CAS  PubMed  Google Scholar 

  38. Yamanaka ES, Tortajada-Genaro LA, Pastor N, Maquieira Á (2018) Polymorphism genotyping based on loop-mediated isothermal amplification and smartphone detection. Biosens Bioelectron 109:177–183

    Article  CAS  PubMed  Google Scholar 

  39. Ren Y, Li Y, Duan X, Wang H, Wang H, Li Z (2019) One-step quantitative single- nucleotide polymorphism (SNP) diagnosis by modified loop-mediated isothermal amplification (mLAMP). ChemistrySelect 4(4):1423–1427

    Article  CAS  Google Scholar 

  40. Su Q, Xing D, Zhou X (2010) Magnetic beads based rolling circle amplification–electrochemiluminescence assay for highly sensitive detection of point mutation. Biosens Bioelectron 25(7):1615–1621

    Article  CAS  PubMed  Google Scholar 

  41. Itonaga M, Matsuzaki I, Warigaya K, Tamura T, Shimizu Y, Fujimoto M, Kojima F, Ichinose M, Murata SI (2016) Novel methodology for rapid detection of KRAS mutation using PNA-LNA-mediated loop-mediated isothermal amplification. PLoS One 11(3):e0151654

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Antonio Tortajada-Genaro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tortajada-Genaro, L.A. (2022). Design of Oligonucleotides for Allele-Specific Amplification Based on PCR and Isothermal Techniques. In: Basu, C. (eds) PCR Primer Design. Methods in Molecular Biology, vol 2392. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1799-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1799-1_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1798-4

  • Online ISBN: 978-1-0716-1799-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics