Skip to main content

Prepulse Inhibition and Vulnerability to Cocaine Addiction

  • Protocol
  • First Online:
Methods for Preclinical Research in Addiction

Part of the book series: Neuromethods ((NM,volume 174))

  • 465 Accesses

Abstract

Prepulse inhibition (PPI) of the startle reflex is the most common sensorimotor gating index, representing the brain’s ability to filter out irrelevant stimuli and prevent information overload. The relationship between PPI impairment and pathology has been widely reported. A PPI deficit is considered an endophenotype of schizophrenia and it is observed in other disorders. Recently, we observed that animals with low PPI are more likely to display behaviors induced by cocaine, which can increase the risk of developing a cocaine use disorder. Therefore, we consider that a PPI deficit could represent a biomarker of vulnerability to the development of a Substance Use Disorder (SUD). The objective of this chapter is to describe PPI, its relation with cocaine addiction and to provide guidelines on how to evaluate it in rodents and humans in order to be able to identify subjects with a PPI deficit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BLA:

Basolateral amygdala

CNS:

Central nervous system

CSPP:

Corticostriatopallidopontine

DA:

Dopamine

dB:

Decibels

DP:

Dual pathology

ISI:

Interstimuli interval

mPFC:

Medial prefrontal cortex

NAcc:

Nucleus accumbens

OFC:

Orbitofrontal cortex

PPI:

Prepulse inhibition

SR :

Startle reflex

SUD :

Substance use disorder

VTA:

Ventral tegmental area

References

  1. Valls-Solé J (2004) Funciones y disfunciones de la reacción de sobresalto en el ser humano. Rev Neurol 39:946–955

    PubMed  Google Scholar 

  2. García-Sánchez F, Martínez-Gras I, Rodríguez-Jiménez R, Rubio G (2011) Inhibición prepulso del reflejo de la respuesta de sobresalto en los trastornos neuropsiquiátricos. Rev Neurol 53(7):422–432

    PubMed  Google Scholar 

  3. Swerdlow NR, Braff DL, Geyer MA (2016) Sensoriomotor gating of the startle reflex: what we said 25 years ago, what has happened since then, and what comes next. J Psychopharmacol 30(11):1072–1081

    Article  PubMed  PubMed Central  Google Scholar 

  4. Swerdlow NR, Light GA (2016) Animal models of deficient sensorimotor gating in Schizophrenia: are they still relevant? Curr Top Behav Neurosci 28:305–325

    Article  CAS  PubMed  Google Scholar 

  5. Kohl S, Heekeren K, Klosterkötten J, Kuhn J (2013) Prepulse inhibition in psychiatric disorders - apart from schizophrenia. J Psychiatr Res 47:445–452

    Article  CAS  PubMed  Google Scholar 

  6. Vargas JP, Diaz E, Portavella M, LĂłpez JC (2016) Animal models of maladaptive traits: disorders in sensorimotor gating and attentional quantifiable responses as possible endophenotypes. Front Psychol 19:7(206)

    Google Scholar 

  7. Miller EA, Kastner DB, Grzybowski MN, Dwinell MR, Geurts AM, Frank LM (2020) Robust and replicable measurement for prepulse inhibition of the acoustic startle response. Mol Psychiatry. https://doi.org/10.1038/s41380-020-0703-y

  8. Braff DL, Greenwood TA, Swerdlow NR, Light GA, Schork NJ, Investigadores del Consortium on the Genetics of Schizophrenia (2008) Avances en la endotipificación de la esquizofrenia. World Psychiatry (Ed Esp) 6:11–18

    Article  Google Scholar 

  9. Braff DL (2010) Prepulse inhibition of the startle reflex: a window on the brain in schizophrenia. Curr Top Behav Neurosci 4:349–371

    Article  PubMed  Google Scholar 

  10. Mena A, Ruiz-Salas JC, Puentes A, Dorado I, Ruiz-Veguilla M, De la Casa LG (2016) Reduced prepulse inhibition as a biomarker of schizophrenia. Front Behav Neurosci 10:202

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mao Z, Bo Q, Li W, Wang Z, Ma X, Wang C (2019) Prepulse inhibition in patients with bipolar disorder: a systematic review and meta-analysis. BMC Psychiatry 19(1):282

    Article  PubMed  PubMed Central  Google Scholar 

  12. Saletti PG, Tomaz C (2018) Cannabidiol effects on prepulse inhibition in nonhuman primates. Rev Neurosci 30(1):95–105

    Article  PubMed  Google Scholar 

  13. Arenas MC, Navarro-Francés CI, Montagud-Romero S, Miñarro J, Manzanedo C (2018) Baseline prepulse inhibition of the startle reflex predicts the sensitivity to the conditioned rewarding effects of cocaine in male and female mice. Psychopharmacology 235(9):2651–2663

    Article  CAS  PubMed  Google Scholar 

  14. Arenas MC, Blanco-Gandía MC, Miñarro J, Manzanedo C (2020) Prepulse inhibition of the startle reflex as a predictor of vulnerability to develop locomotor sensitization to cocaine. Front Behav Neurosci 13:296

    Article  PubMed  PubMed Central  Google Scholar 

  15. Koch M, Schnitzler HU (1997) The acoustic startle response in rats—circuits mediating evocation, inhibition and potentiation. Behav Brain Res 89(1):35–49

    Article  CAS  PubMed  Google Scholar 

  16. Rohleder C, Wiedermann D, Neumaier B, Drzezga A, Timmermann L, Graf R, Leweke FM, Endepols H (2016) The functional networks of prepulse inhibition: neuronal connectivity analysis based on FDG-PET in awake and unrestrained rats. Front Behav Neurosci 10:148

    Article  PubMed  PubMed Central  Google Scholar 

  17. Swerdlow NR, Bhakta SG, Rana BK, Kei J, Chou HH, Talledo JA (2017) Sensorimotor gating in healthy adults tested over a 15 year period. Biol Psychol 123:177–186

    Article  PubMed  Google Scholar 

  18. Marín-Mayor M, Jurado-Barba R, Martínez-Grass I, Ponce-Alfaro G, Rubio-Valladolid G (2014) La respuesta de sobresalto y la inhibición prepulso en los trastornos por uso de alcohol. Implicaciones para la práctica clínica. Clínica y Salud 25:147–155

    Article  Google Scholar 

  19. Valsamis B, Schmid S (2011) Habituation and prepulse inhibition of acoustic startle in rodents. J Vis Exp 55:1–10

    Google Scholar 

  20. Talledo JA, Sutherland Owens AN, Schortinghuis T, Swerdlow NR (2009) Amphetamine effects on startle gating in normal women and female rats. Psychopharmacology 204(1):165–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kumari V, Antonova E, Zachariah E, Galea A, Aasen I, Ettinger U et al (2005) Structural brain correlates of prepulse inhibition of the acoustic startle response in healthy humans. NeuroImage 26(4):1052–1058

    Article  PubMed  Google Scholar 

  22. Fendt M, Li L, Yeomans JS (2001) Brain stem circuits mediating prepulse inhibition of the startle reflex. Psychopharmacology 156(2–3):216–224

    Article  CAS  PubMed  Google Scholar 

  23. Fierro M (2011) El desarrollo conceptual de la ciencia cognitiva. Parte I. Rev Colomb Psiquiatr 40(3):519–533

    Article  Google Scholar 

  24. Andreasen NC (1999) A unitary model of schizophrenia: Bleuler’s “fragmented phrene” as schizencephaly. Arch Gen Psychiatry 56(9):781–787

    Article  CAS  PubMed  Google Scholar 

  25. Ding Y, Xu N, Gao Y, Wu Z, Li L (2019) The role of the deeper layers of the superior colliculus in attentional modulations of prepulse inhibition. Behav Brain Res 364:106–113

    Article  PubMed  Google Scholar 

  26. Azzopardi E, Louttit AG, DeOliveira C, Laviolette SR, Schmid S (2018) The role of cholinergic midbrain neurons in startle and prepulse inhibition. J Neurosci 38(41):8798–8808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fulcher N, Azzopardi E, De Oliveira C et al (2020) Deciphering midbrain mechanisms underlying prepulse inhibition of startle. Prog Neurobiol 185:101734

    Article  CAS  PubMed  Google Scholar 

  28. Meng Q, Ding Y, Chen L, Li L (2020) The medial agranular cortex mediates attentional enhancement of prepulse inhibition of the startle reflex. Behav Brain Res 383:112511

    Article  CAS  PubMed  Google Scholar 

  29. Öz P, Kaya Yertutanol FD, Gözler T, Özçetin A, Uzbay IT (2017) Lesions of the paraventricular thalamic nucleus attenuates prepulse inhibition of the acoustic startle reflex. Neurosci Lett 642:31–36

    Article  PubMed  Google Scholar 

  30. Howes OD, McCutcheon R, Owen MJ, Murray RM (2017) The role of genes, stress, and dopamine in the development of schizophrenia. Biol Psychiatry 81(1):9–20

    Article  CAS  PubMed  Google Scholar 

  31. Zhang S, Hu S, Bednarski SR, Erdman E, Li CS (2014) Error-related functional connectivity of the thalamus in cocaine dependence. Neuroimage Clin 4:585–592

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zhang J, Forkstam C, Engel JA, Svensson L (2000) Role of dopamine in prepulse inhibition of acoustic startle. Psychopharmacology (Berlin) 149(2):181–188

    Article  CAS  Google Scholar 

  33. Bitsios P, Giakoumaki SG, Theou K, Frangou S (2006) Increased prepulse inhibition of the acoustic startle response is associated with better strategy formation and execution times in healthy males. Neuropsychologia 44(12):2494–2499

    Article  PubMed  Google Scholar 

  34. Giakoumaki SG, Bitsios P, Frangou S (2006) The level of prepulse inhibition in healthy individuals may index cortical modulation of early information processing. Brain Res 1078(1):168–170

    Article  CAS  PubMed  Google Scholar 

  35. Halberstadt AL, Geyer MA (2018) Effect of hallucinogens on unconditioned behavior. Curr Top Behav Neurosci 36:159–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fendt M (1999) Enhancement of prepulse inhibition after blockade of GABA activity within the superior colliculus. Brain Res 833(1):81–85

    Article  CAS  PubMed  Google Scholar 

  37. Wang J, Song HR, Guo MN, Ma SF, Yun Q, Zhang WN (2020) Adult conditional knockout of PGC-1α in GABAergic neurons causes exaggerated startle reactivity, impaired short-term habituation and hyperactivity. Brain Res Bull 157:128–139

    Article  CAS  PubMed  Google Scholar 

  38. Bosch D, Schmid S (2008) Cholinergic mechanism underlying prepulse inhibition of the startle response in rats. Neuroscience 155(1):326–335

    Article  CAS  PubMed  Google Scholar 

  39. Geyer MA, Krebs-Thomson K, Braff DL, Swerdlow NR (2001) Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: a decade in review. Psychopharmacology (Berlin) 156(2–3):117–154

    Article  CAS  Google Scholar 

  40. Ralph-Williams RJ, Lehmann-Masten V, Geyer MA (2003) Dopamine D1 rather than D2 receptor agonists disrupt prepulse inhibition of startle in mice. Neuropsychopharmacology 28(1):108–118

    Article  CAS  PubMed  Google Scholar 

  41. Doherty JM, Masten VL, Powell SB, Ralph RJ, Klamer D, Low MJ et al (2008) Contributions of dopamine D1, D2, and D3 receptor subtypes to the disruptive effects of cocaine on prepulse inhibition in mice. Neuropsychopharmacology 33(11):2648–2656

    Article  CAS  PubMed  Google Scholar 

  42. Yamashita M, Fukushima S, Shen HW, Hall FS, Uhl GR, Numachi Y et al (2006) Norepinephrine transporter blockade can normalize the prepulse inhibition deficits found in dopamine transporter knockout mice. Neuropsychopharmacology 31(10):2132–2139

    Article  CAS  PubMed  Google Scholar 

  43. Volkow ND, Morales M (2015) The brain on drugs: from reward to addiction. Cell 162(4):712–725

    Article  CAS  PubMed  Google Scholar 

  44. Kumari V, Mulligan OF, Cotter PA, Poon L, Toone BK, Checkley SA et al (1998) Effects of single oral administrations of haloperidol and d-amphetamine on prepulse inhibition of the acoustic startle reflex in healthy male volunteers. Behav Pharmacol 9(7):567–576

    Article  CAS  PubMed  Google Scholar 

  45. Grillon C, Sinha R, Ameli R, O’Malley SS (2000) Effects of alcohol on baseline startle and prepulse inhibition in young men at risk for alcoholism and/or anxiety disorders. J Stud Alcohol 61(1):46–54

    Article  CAS  PubMed  Google Scholar 

  46. Arias F, Szerman N, Vega P, Mesías B, Basurte I, Morant C et al (2013) Abuso o dependencia a la cocaína y otros trastornos psiquiátricos. Estudio Madrid sobre la prevalencia de la patología dual. Revista de Psiquiatría y Salud Mental 6(3):121–128

    Article  PubMed  Google Scholar 

  47. Roncero C, Szerman N, Terán A, Pino C, Vázquez JM, Velasco E et al (2016) Professionals’ perception on the management of patients with dual disorders. Pat Pref Adher 10:1855–1868

    Google Scholar 

  48. Szerman N, Marín-Navarrete R, Fernández-Mondragón J, Roncero C (2015) Patología dual en poblaciones especiales: una revisión narrativa. Revista Internacional de Investigación en Adicciones 1(1):50–67

    Article  Google Scholar 

  49. Morales-Muñoz I, Martínez-Gras I, Ponce G, de la Cruz J, Lora D, Rodríguez-Jiménez R, Jurado-Barba R, Navarrete F, García-Gutierrez MS, Manzanares J, Rubio G (2017) Psychological symptomatology and impaired prepulse inhibition of the startle reflex are associated with cannabis-induced psychosis. J Psychopharmacol 31(8):1035–1045

    Article  PubMed  Google Scholar 

  50. Vrana SR, Calhoun PS, Dennis MF, Kirby AC, Beckham JC (2015) Acoustic startle and prepulse inhibition predict smoking lapse in posttraumatic stress disorder. J Psychopharmacol 29(10):1070–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. European Monitoring Centre for Drugs and Drug Addiction (2018) Recent changes in Europe’s cocaine market: results from an EMCDDA trendspotter study. Publications Office of the European Union, Luxembourg

    Google Scholar 

  52. European Monitoring Centre for Drugs and Drug Addiction (2019) European drug report 2019: trends and developments. Publications Office of the European Union, Luxembourg

    Google Scholar 

  53. OEDT (2016) Encuesta sobre Uso de Drogas en Enseñanzas Secundarias en España. ESTUDES 2014

    Google Scholar 

  54. Arias F, Szerman N, Vega P, MesĂ­as B, Basurte I, Rentero D (2017) Trastorno bipolar y trastorno por uso de sustancias. Estudio Madrid sobre prevalencia de patologĂ­a dual. Adicciones 29(3):186

    Article  PubMed  Google Scholar 

  55. González-Llona I, Tumuluru S, González-Torres MA, Gaviria M (2015) Cocaína: una revisión de la adicción y el tratamiento. Rev Asoc Esp Neuropsiq 35(127):555–571

    Article  Google Scholar 

  56. Cadet JL, Bisagno V, Milroy CM (2014) Neuropathology of substance use disorders. Acta Neuropathol 127(1):91–107

    Article  CAS  PubMed  Google Scholar 

  57. Ashok AH, Mizuno Y, Volkow ND, Howes OD (2017) Association of stimulant use with dopaminergic alterations in users of cocaine, amphetamine, or methamphetamine: a systematic review and meta-analysis. JAMA Psychiatry 74(5):511–519

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ledonne A, Mercuri NB (2017) Current concepts on the physiopathological relevance of dopaminergic receptors. Front Cell Neurosci 11:27

    Article  PubMed  PubMed Central  Google Scholar 

  59. Wang X, Liu L, Adams W, Li S, Zhang Q, Li B et al (2015) Cocaine exposure alters dopaminergic modulation of prefronto-accumbens transmission. Physiol Behav 145:112–117

    Article  CAS  PubMed  Google Scholar 

  60. Verdejo-García A, Pérez-García M, Sánchez-Barrera M, Rodriguez-Fernández A, Gómez-Río M (2007) Neuroimagen y drogodependencias: correlatos neuroanatómicos del consumo de cocaína, opiáceos, cannabis y éxtasis. Rev Neurol 44(7):432–439

    PubMed  Google Scholar 

  61. Lorea I, Fernández-Montalvo J, Tirapu-Ustárroz J, Landa N, López-Goñi JJ (2010) Rendimiento neuropsicológico en la adicción a la cocaína: una revisión crítica. Rev Neurol 51:412–426

    PubMed  Google Scholar 

  62. Preller KH, Ingold N, Hulka LM, Vonmoos M, Jenni D, Baumgartner MR et al (2013) Increased sensorimotor gating in recreational and dependent cocaine users is modulated by craving and attention-deficit/hyperactivity disorder symptoms. Biol Psychiatry 73(3):225–234

    Article  CAS  PubMed  Google Scholar 

  63. Efferen TR, Duncan EJ, Szilagyi S, Chakravorty S, Adams JU, Gonzenbach S, Angrist B, Butler PD, Rotrosen J (2000) Diminished acoustic startle in chronic cocaine users. Neuropsychopharmacology 22(1):89–96

    Article  CAS  PubMed  Google Scholar 

  64. Volkow ND, Koob GF, McLellan AT (2016) Neurobiologic advances from the brain disease model of addiction. N Engl J Med 374(4):363–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Broderick PA, Rosenbaum T (2013) Sex-specific brain deficits in auditory processing in an animal model of cocaine-related schizophrenic disorders. Brain Sci 3(2):504–520

    Article  PubMed  PubMed Central  Google Scholar 

  66. Byrnes JJ, Hammer RP (2000) The disruptive effect of cocaine on prepulse inhibition is prevented by repeated administration in rats. Neuropsychopharmacology 22(5):551–554

    Article  CAS  PubMed  Google Scholar 

  67. Martínez ZA, Ellison GD, Geyer MA, Swerdlow NR (1999) Effects of sustained cocaine exposure on sensorimotor gating of startle in rats. Psychopharmacology (Berlin) 142:253–260

    Article  Google Scholar 

  68. Hutchison KE, Swift R (1999) Effect of d-amphetamine on prepulse inhibition of the startle reflex in humans. Psychopharmacology 143:394–400

    Article  CAS  PubMed  Google Scholar 

  69. Swerdlow NR, Stephany N, Wasserman LC, Talledo J, Shoemaker J, Auerbach PP (2003) Amphetamine effects on prepulse inhibition across-species: replication and parametric extension. Neuropsychopharmacology 28:640–650

    Article  CAS  PubMed  Google Scholar 

  70. Zhang J, Engel JA, Söderpalm B, Svensson L (1998) Repeated administration of amphetamine induces sensitisation to its disruptive effect on prepulse inhibition in the rat. Psychopharmacology 135(4):401–406

    Article  CAS  PubMed  Google Scholar 

  71. Dulawa SC, Geyer MA (1996) Psychopharmacology of prepulse inhibition in mice. Chin J Physiol 39(3):139–146

    CAS  PubMed  Google Scholar 

  72. Ralph RJ, Varty GB, Kelly MA, Wang YM, Caron MG, Rubinstein M, Grandy DK, Low MJ, Geyer MA (1992) The dopamine D2, but not D3 or D4, receptor subtype is essential for the disruption of prepulse inhibition produced by amphetamine in mice. J Neurosci 19(11):4627–4633

    Article  Google Scholar 

  73. Yavas E, Young AM (2017) N-Methyl-d-aspartate modulation of nucleus accumbens dopamine release by metabotropic glutamate receptors: fast cyclic voltammetry studies in rat brain slices in vitro. ACS Chem Neurosci 8(2):320–328

    Article  CAS  PubMed  Google Scholar 

  74. Borroto-Escuela DO, Romero-Fernandez W, Narvaez M, Oflijan J, Agnati LF, Fuxe K (2014) Hallucinogenic 5-HT2AR agonists LSD and DOI enhance dopamine D2R protomer recognition and signaling of D2-5-HT2A heteroreceptor complexes. Biochem Biophys Res Commun 443(1):278–284

    Article  CAS  PubMed  Google Scholar 

  75. Dominici P, Kopec K, Manur R, Khalid A, Damiron K, Rowden A (2015) Phencyclidine intoxication case series study. J Med Toxicol 11(3):321–325

    Article  CAS  PubMed  Google Scholar 

  76. Ham S, Kim TK, Chung S, Im HI (2017) Drug abuse and psychosis: new insights into drug-induced psychosis. Exp Neurobiol 26(1):11–24

    Article  PubMed  PubMed Central  Google Scholar 

  77. Adams JU, Efferen TR, Duncan EJ, Rotrosen J (2001) Prepulse inhibition of the acoustic startle response in cocaine-withdrawn rats. Pharmacol Biochem Behav 68(4):753–759

    Article  CAS  PubMed  Google Scholar 

  78. Arenas MC, Caballero-Reinaldo C, Navarro-Frances CI, Manzanedo C (2017) Efecto de la cocaína sobre la inhibición por prepulso de la respuesta de sobresalto [Effects of cocaine on prepulse inhibition of the startle response]. Rev Neurol 65(11):507–519

    Google Scholar 

  79. Cameron CM, Wightman RM, Carelli RM (2016) One month of cocaine abstinence potentiates rapid dopamine signaling in the nucleus accumbens core. Neuropharmacology 111:223–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Saddoris MP (2016) Terminal dopamine release kinetics in the accumbens core and shell are distinctly altered after withdrawal from cocaine self-administration. eNeuro 3(5):ENEURO.0274-16.2016

    Article  PubMed  PubMed Central  Google Scholar 

  81. Vollenweider FX, Barro M, Csomor PA, Feldon J (2006) Clozapine enhances prepulse inhibition in healthy humans with low but not with high prepulse inhibition levels. Biol Psychiatry 60(6):597–603

    Article  CAS  PubMed  Google Scholar 

  82. Hutchison KE, Rohsenow D, Monti P, Palfai T, Swift R (1997) Prepulse inhibition of the startle reflex: preliminary study of the effects of a low dose of alcohol in humans. Alcohol Clin Exp Res 21(7):1312–1319

    CAS  PubMed  Google Scholar 

  83. van der Elst MC, Ellenbroek BA, Cools AR (2006) Cocaine strongly reduces prepulse inhibition in apomorphine-susceptible rats, but not in apomorphine-unsusceptible rats: regulation by dopamine D2 receptors. Behav Brain Res 175(2):392–398

    Article  PubMed  Google Scholar 

  84. van der Elst MC, Wunderink YS, Ellenbroek BA, Cools AR (2007) Differences in the cellular mechanism underlying the effects of amphetamine on prepulse inhibition in apomorphine-susceptible and apomorphine-unsusceptible rats. Psychopharmacology 190(1):93–102

    Article  PubMed  Google Scholar 

  85. van der Elst MC, Verheij MM, Roubos EW, Ellenbroek BA, Veening JG, Cools AR (2005) A single exposure to novelty differentially affects the accumbal dopaminergic system of apomorphine-susceptible and apomorphine-unsusceptible rats. Life Sci 76(12):1391–1406

    Article  PubMed  Google Scholar 

  86. van der Elst MC, Roubos EW, Ellenbroek BA, Veening JG, Cools AR (2005) Apomorphine-susceptible rats and apomorphine-unsusceptible rats differ in the tyrosine hydroxylase-immunoreactive network in the nucleus accumbens core and shell. Exp Brain Res 160(4):418–423

    Article  CAS  PubMed  Google Scholar 

  87. Bell RL, Rodd ZA, Hsu CC, Lumeng L, Murphy JM, McBride WJ (2003) Amphetamine-modified acoustic startle responding and prepulse inhibition in adult and adolescent alcohol-preferring and -nonpreferring rats. Pharmacol Biochem Behav 75(1):163–171

    Article  CAS  PubMed  Google Scholar 

  88. De Koning MB, Bloemen OJ, Van Duin ED, Booij J, Abel KM, De Haan L et al (2014) Pre-pulse inhibition and striatal dopamine in subjects at an ultra-high risk for psychosis. J Psychopharmacol 28(6):553–560

    Article  PubMed  Google Scholar 

  89. Falkai P, Rossner MJ, Schulze TG, Hasan A, Brzózka MM, Malchow B et al (2015) Kraepelin revisited: schizophrenia from degeneration to failed regeneration. Mol Psychiatry 20(6):671–676

    Article  CAS  PubMed  Google Scholar 

  90. Volkow ND, Wang GJ, Fowler JS, Logan J, Gatley SJ, Gifford A et al (1999) Prediction of reinforcing responses to psychostimulants in humans by brain dopamine D2 receptor levels. Am J Psychiatry 156:1440–1443

    Article  CAS  PubMed  Google Scholar 

  91. Bitsios P, Giakoumaki SG, Frangou S (2005) The effects of dopamine agonists on prepulse inhibition in healthy men depend on baseline PPI values. Psychopharmacology 182:144–152

    Article  CAS  PubMed  Google Scholar 

  92. Peleg-Raibstei D, Hauser J, Llano Lopez LH, Feldon J, Gargiulo PA, Yee BK (2013) Baseline prepulse inhibition expression predicts the propensity of developing sensitization to the motor stimulant effects of amphetamine in C57BL/6 mice. Psychopharmacology 225(2):341–352

    Article  Google Scholar 

  93. Steketee JD, Kalivas PW (2011) Drug wanting: behavioral sensitization and relapse to drug-seeking behavior. Pharmacol Rev 63:348–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lüscher C, Malenka RC (2011) Drug-evoked synaptic plasticity in addiction: from molecular changes to circuit remodeling. Neuron 69:650–663

    Article  PubMed  PubMed Central  Google Scholar 

  95. Kawa AB, Valenta AC, Kennedy RT, Robinson TE (2019) Incentive and dopamine sensitization produced by intermittent but not long access cocaine self-administration. Eur J Neurosci 50(4):2663–2682

    Article  PubMed  PubMed Central  Google Scholar 

  96. Steketee JD (2005) Cortical mechanisms of cocaine sensitization. Crit Rev Neurobiol 17:69–86

    Article  CAS  PubMed  Google Scholar 

  97. Blumenthal TD, Cuthbert BN, Filion DL, Hackley S, Lipp OV, Van Boxtel A (2005) Committee report: guidelines for human startle eyeblink electromyographic studies. Psychophysiology 42(1):1–15

    Article  PubMed  Google Scholar 

  98. Nesbitt K, Blackmore K, Hookham G, Kay-Lambkin F, Walla P (2015) Using the startle eye-blink to measure affect in players. In: Serious games analytics. Springer, Cham, pp 401–434

    Chapter  Google Scholar 

  99. Hager JC, Ekman P (1985) The assimetry of facial actions is inconsistent with models of hemispheric specialization. Psychophysiology 22:307–318

    Article  CAS  PubMed  Google Scholar 

  100. Braff DL, Geyer MA, Swerdlow NR (2001) Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies. Psychopharmacology 156(2–3):234–258

    Article  CAS  PubMed  Google Scholar 

  101. Quednow BB, Kühn KU, Hoenig K, Maier W, Wagner M (2004) Prepulse inhibition and habituation of acoustic startle response in male MDMA (“Ecstasy”) users, cannabis users and healthy controls. Neuropsychopharmacology 29(5):982–990

    Article  CAS  PubMed  Google Scholar 

  102. Meteran H, Vindbjerg E, Uldall SW, Glenthøj B, Carlsson J, Oranje B (2018) Startle habituation, sensory, and sensorimotor gating in trauma-affected refugees with posttraumatic stress disorder. Psychol Med 49:581–589

    Article  PubMed  Google Scholar 

  103. Kumari V, Gray JA, Gupta P, Luscher S, Sharma T (2003) Sex differences in prepulse inhibition of the acoustic startle response. Personal Individ Differ 35(4):733–742

    Article  Google Scholar 

  104. De la Casa LG, Mena A, Ruiz-Salas JC (2016) Effect of stress and attention on startle response and prepulse inhibition. Physiol Behav 165:179–186

    Article  PubMed  Google Scholar 

  105. Della CV, Höfer I, Weiner I, Feldon J (1998) The effects of smoking on acoustic prepulse inhibition in healthy men and women. Psychopharmacology 137:362–368

    Article  Google Scholar 

  106. Swerdlow NR, Eastvold A, Gerbranda T, Uyan KM, Hartman P, Doan Q, Auerbach P (2000) Effects of caffeine on sensorimotor gating of the startle reflex in normal control subjects: impact of caffeine intake and withdrawal. Psychopharmacology 151(4):368.378

    Article  Google Scholar 

  107. Rubio G, López-Muñoz F, Jurado-Barba R, Martínez-Gras I, Rodríguez-Jiménez R, Espinosa R, Carlos LJ (2015) Stress induced by the socially evaluated cold-pressor test cause equivalent deficiencies of sensory gating in male subjects with schizophrenia and healthy controls. Psychiatry Res 228(3):283.288

    Article  Google Scholar 

  108. Swerdlow NR, Hartman PL, Auerbach PP (1997) Changes in sensorimotor inhibition across the menstrual cycle: implications for neuropsychiatric disorders. Biol Psychiatry 41(4):452–460

    Article  CAS  PubMed  Google Scholar 

  109. Kumari V, Konstantinou J, Papadopoulos A, Aasen I, Poon L, Halari R, Cleare AJ (2009) Evidence for a role of progesterone in menstrual cycle-related variability in prepulse inhibition in healthy young women. Neuropsychopharmacology 35(4):929–937

    Article  PubMed  PubMed Central  Google Scholar 

  110. Ruisoto P, Contador I (2019) The role of stress in drug addiction. An integrative review. Physiol Behav 202:62–68

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank to Guillermo Chuliá for his editing of the manuscript and Dr Terry D. Blumenthal for sharing his technical experience in electromyography with us. This work was supported by the following research grants: Ministerio de Economía y Competitividad. Proyecto I+D+i PSI2015-69649-R; and UV-INV-AE19-1203315.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Carmen Arenas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Arenas, M.C., Pujante-Gil, S., Manzanedo, C. (2022). Prepulse Inhibition and Vulnerability to Cocaine Addiction. In: Aguilar, M.A. (eds) Methods for Preclinical Research in Addiction. Neuromethods, vol 174. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1748-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1748-9_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1747-2

  • Online ISBN: 978-1-0716-1748-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics