Skip to main content

Integration of Functional Genomic, Transcriptomic, and Metabolomic Data to Identify Key Features in Genomic Expression, Metabolites, and Metabolic Pathways of Babesia divergens

  • Protocol
  • First Online:
Parasite Genomics

Abstract

Upon invasion of red blood cells (RBCs), the Apicomplexa parasite Babesia divergens remains within the RBC for several hours and reproduces asexually, resulting in infective free merozoites that egress and destroy the host cell. Free merozoites rapidly seek and invade new uninfected RBCs. This repetitive cycle allows B. divergens to build a complex population of intraerythrocytic and extracellular stages in the bloodstream of humans and cattle, thus causing babesiosis. To compare biological aspects between B. divergens stages, including the different nature of their metabolism, could be key to our understanding of pathogenesis. Thus, we are currently assessing differences in the B. divergens metabolism of intra- and extracellular (free merozoites) life stages by the use of an integrative approach combining functional genomic, transcriptomic, differential expression, and metabolomic data acquired from sequencing and various analytical platforms. To our knowledge, this is the first effort to describe, in detail, the experimental procedures and integration of different omics to explore the regulation of the metabolism, invasion and proliferation mechanisms of B. divergens. This integrative approach can be used as a reference to study other Apicomplexa parasites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cursino-Santos JR, Alhassan A, Singh M et al (2014) Babesia: impact of cold storage on the survival and the viability of parasites in blood bags: viability of Babesia after refrigeration. Transfusion (Paris) 54:585–591

    Article  Google Scholar 

  2. Castro E, González LM, Rubio JM et al (2014) The efficacy of the ultraviolet C pathogen inactivation system in the reduction of Babesia divergens in pooled buffy coat platelets: UVC inactivation of B. divergens in PLTs. Transfusion (Paris) 54:2207–2216

    Article  CAS  Google Scholar 

  3. Zintl A, Mulcahy G, Skerrett HE et al (2003) Babesia divergens, a bovine blood parasite of veterinary and zoonotic importance. Clin Microbiol Rev 16:622–636

    Article  Google Scholar 

  4. Conesa JJ, Sevilla E, Terrón MC et al (2020) Four-dimensional characterization of the Babesia divergens asexual life cycle, from the Trophozoite to the multiparasite stage. mSphere 5:e00928–e00920

    Article  CAS  Google Scholar 

  5. Cursino-Santos JR, Singh M, Pham P et al (2016) Babesia divergens builds a complex population structure composed of specific ratios of infected cells to ensure a prompt response to changing environmental conditions. Cell Microbiol 18:859–874

    Article  CAS  Google Scholar 

  6. González LM, Estrada K, Grande R et al (2019) Comparative and functional genomics of the protozoan parasite Babesia divergens highlighting the invasion and egress processes. PLoS Negl Trop Dis 13:e0007680

    Article  Google Scholar 

  7. Goldberg DE, Zimmerberg J (2020) Hardly vacuous: the Parasitophorous vacuolar membrane of malaria parasites. Trends Parasitol 36:138–146

    Article  CAS  Google Scholar 

  8. Lobo C-A (2005) Babesia divergens and Plasmodium falciparum use common receptors, Glycophorins A and B, to invade the human red blood cell. Infect Immun 73:649–651

    Article  CAS  Google Scholar 

  9. Cursino-Santos JR, Halverson G, Rodriguez M et al (2014) Identification of binding domains on red blood cell glycophorins for Babesia divergens: RBC Glycophorins and Babesia invasion. Transfusion (Paris) 54:982–989

    Article  CAS  Google Scholar 

  10. Montero E, Rodriguez M, Oksov Y et al (2009) Babesia divergens apical membrane antigen 1 and its interaction with the human red blood cell. Infect Immun 77:4783–4793

    Article  CAS  Google Scholar 

  11. Montero E, Gonzalez LM, Rodriguez M et al (2006) A conserved Subtilisin protease identified in Babesia divergens Merozoites. J Biol Chem 281:35717–35726

    Article  CAS  Google Scholar 

  12. Ord RL, Rodriguez M, Cursino-Santos JR et al (2016) Identification and characterization of the Rhoptry neck protein 2 in Babesia divergens and B. microti. Infect Immun 84:1574–1584

    Article  CAS  Google Scholar 

  13. Montero E, Rodriguez M, Gonzalez L-M et al (2008) Babesia divergens: identification and characterization of BdHSP-20, a small heat shock protein. Exp Parasitol 119:238–245

    Article  CAS  Google Scholar 

  14. Montero E, Rafiq S, Heck S et al (2007) Inhibition of human erythrocyte invasion by Babesia divergens using serine protease inhibitors. Mol Biochem Parasitol 153:80–84

    Article  CAS  Google Scholar 

  15. Sevilla E, González LM, Luque D et al (2018) Kinetics of the invasion and egress processes of Babesia divergens, observed by time-lapse video microscopy. Sci Rep 8(1):14116

    Article  Google Scholar 

  16. Lobo CA, Cursino-Santos JR, Singh M et al (2019) Babesia divergens: a drive to survive. Pathogens 8:95

    Article  Google Scholar 

  17. Jalovecka M, Hajdusek O, Sojka D et al (2018) The complexity of piroplasms life cycles. Front Cell Infect Microbiol 8:248

    Article  Google Scholar 

  18. Cuesta I, Gonzalez LM, Estrada K et al (2014) High-quality draft genome sequence of Babesia divergens, the etiological agent of cattle and human Babesiosis. Genome Announc 2:e01194–e01201

    Article  Google Scholar 

  19. Gil-de-la-Fuente A, Godzien J, Saugar S et al (2019) CEU mass mediator 3.0: a metabolite annotation tool. J Proteome Res 18:797–802

    Article  CAS  Google Scholar 

  20. Sartain M (2017), The Agilent metabolomics dynamic MRM database and method. https://www.agilent.com/cs/library/applications/5991-8073EN.pdf

  21. López-Gonzálvez Á, Godzien J, García A et al (2019) Capillary electrophoresis mass spectrometry as a tool for untargeted metabolomics. Methods Mol Biol 1978:55–77

    Article  Google Scholar 

  22. Misra BB (2020) Data normalization strategies in metabolomics: current challenges, approaches, and tools. Eur J Mass Spectrom 26:165–174

    Article  CAS  Google Scholar 

  23. Cuevas-Delgado P, Dudzik D, Miguel V et al (2020) Data-dependent normalization strategies for untargeted metabolomics—a case study. Anal Bioanal Chem 412:6391–6405

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to “Unidad de Secuenciación Masiva y Bioinformática” of the “Laboratorio Nacional de Apoyo Tecnológico a las Ciencias Genómicas,” CONACyT #260481, at the Instituto de Biotecnologíaa/UNAM for sequencing and bioinformatics support. We thank Centro de Transfusiones de la Comunidad de Madrid that provided the human A+ blood from healthy volunteer donors. This work was supported by grants from Ministerio de Economia y Competitividad (MINECO) from Spain (AGL2014-56193 R to EM and LMG) and Health Institute Carlos III (PI20CIII/00037 to EM and LMG a grant from the Health Institute Carlos III (PI20CIII/00037 to EM and LGM) and a grant from Ministerio de Ciencías, Innovación y Universidades (MICINM) from Spain (RTI2018-095166-B-I00 to CB, AG, MFRS and MFG) from Spain and European Regional Development Fund (FEDER). ES was awarded a research fellowship from Plan Estatal de Investigación Científica y Técnica y de Innovación, MINECO, Spain Ministerio de Economía y Competitividad, Spain. MFG was awarded a research fellowship from Fundación Universitaria San Pablo CEU, Spain.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Antonia García or Estrella Montero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fernández-Garcia, M. et al. (2021). Integration of Functional Genomic, Transcriptomic, and Metabolomic Data to Identify Key Features in Genomic Expression, Metabolites, and Metabolic Pathways of Babesia divergens. In: de Pablos, L.M., Sotillo, J. (eds) Parasite Genomics. Methods in Molecular Biology, vol 2369. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1681-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1681-9_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1680-2

  • Online ISBN: 978-1-0716-1681-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics