Skip to main content

Imaging of Actin Cytoskeleton in the Nematode Caenorhabditis elegans

  • Protocol
  • First Online:
Cytoskeleton

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2364))

Abstract

The nematode Caenorhabditis elegans is one of the major model organisms in cell and developmental biology. This organism is easy to culture in laboratories and suitable for microscopic investigation of the cytoskeleton. Because the worms are small and transparent, the actin cytoskeleton in many tissues and cells can be observed with appropriate visualization techniques without sectioning or dissection. This chapter describes the introduction to representative methods for imaging the actin cytoskeleton in C. elegans and a protocol for staining worms with fluorescent phalloidin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. White JG, Southgate E, Thomson JN, Brenner S (1986) The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond Ser B Biol Sci 314:1–340

    CAS  Google Scholar 

  3. Sulston JE, Schierenberg E, White JG, Thomson JN (1983) The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 100:64–119

    Article  CAS  PubMed  Google Scholar 

  4. Sherwood DR, Plastino J (2018) Invading, leading and navigating cells in Caenorhabditis elegans: insights into cell movement in vivo. Genetics 208:53–78

    Article  CAS  PubMed  Google Scholar 

  5. Pintard L, Bowerman B (2019) Mitotic cell division in Caenorhabditis elegans. Genetics 211:35–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Goldstein B, Nance J (2020) Caenorhabditis elegans gastrulation: a model for understanding how cells polarize change shape and journey toward the center of an embryo. Genetics 214:265–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ono S (2014) Regulation of structure and function of sarcomeric actin filaments in striated muscle of the nematode Caenorhabditis elegans. Anat Rec 297:1548–1559

    Article  CAS  Google Scholar 

  8. Benian GM, Epstein HF (2011) Caenorhabditis elegans muscle: a genetic and molecular model for protein interactions in the heart. Circ Res 109:1082–1095

    Article  CAS  PubMed  Google Scholar 

  9. Chisholm AD, Hutter H, Jin Y, Wadsworth WG (2016) The genetics of axon guidance and axon regeneration in Caenorhabditis elegans. Genetics 204:849–882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Harris H, Tso M, Epstein HF (1977) Actin and myosin-linked calcium regulation in the nematode Caenorhabditis elegans: biochemical and structural properties of native filaments and purified proteins. Biochemistry 16:859–865

    Article  CAS  PubMed  Google Scholar 

  11. Ono S (1999) Purification and biochemical characterization of actin from Caenorhabditis elegans: its difference from rabbit muscle actin in the interaction with nematode ADF/cofilin. Cell Motil Cytoskeleton 43:128–136

    Article  CAS  PubMed  Google Scholar 

  12. Ono S, Pruyne D (2012) Biochemical and cell biological analysis of actin in the nematode Caenorhabditis elegans. Methods 56:11–17

    Article  CAS  PubMed  Google Scholar 

  13. Ono S, Baillie DL, Benian GM (1999) UNC-60B an ADF/cofilin family protein is required for proper assembly of actin into myofibrils in Caenorhabditis elegans body wall muscle. J Cell Biol 145:491–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ono K, Parast M, Alberico C, Benian GM, Ono S (2003) Specific requirement for two ADF/cofilin isoforms in distinct actin-dependent processes in Caenorhabditis elegans. J Cell Sci 116:2073–2085

    Article  CAS  PubMed  Google Scholar 

  15. Mohri K, Ono K, Yu R, Yamashiro S, Ono S (2006) Enhancement of actin-depolymerizing factor/cofilin-dependent actin disassembly by actin-interacting protein 1 is required for organized actin filament assembly in the Caenorhabditis elegans body wall muscle. Mol Biol Cell 17:2190–2199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Duerr JS (2006) Immunohistochemistry WormBook ed the C elegans research community WormBook. PubMed PMID: 18050446; PMCID: PMC4780882; https://doi.org/10.1895/wormbook.1.105.1

  17. Finney M, Ruvkun G (1990) The unc-86 gene product couples cell lineage and cell identity in C elegans. Cell 63:895–905

    Article  CAS  PubMed  Google Scholar 

  18. Shakes DC, Miller DM, Nonet ML (2012) Immunofluorescence microscopy. Methods Cell Biol 107:35–66

    Article  CAS  PubMed  Google Scholar 

  19. Wilson KJ, Qadota H, Benian GM (2012) Immunofluorescent localization of proteins in Caenorhabditis elegans muscle. Methods Mol Biol 798:171–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Riedl J, Crevenna AH, Kessenbrock K, Yu JH, Neukirchen D, Bista M, Bradke F, Jenne D, Holak TA, Werb Z, Sixt M, Wedlich-Soldner R (2008) Lifeact: a versatile marker to visualize F-actin. Nat Methods 5:605–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Burkel BM, von Dassow G, Bement WM (2007) Versatile fluorescent probes for actin filaments based on the actin-binding domain of utrophin. Cell Motil Cytoskeleton 64:822–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Edwards KA, Demsky M, Montague RA, Weymouth N, Kiehart DP (1997) GFP-moesin illuminates actin cytoskeleton dynamics in living tissue and demonstrates cell shape changes during morphogenesis in drosophila. Dev Biol 191:103–117

    Article  CAS  PubMed  Google Scholar 

  23. Aizawa H, Sameshima M, Yahara I (1997) A green fluorescent protein-actin fusion protein dominantly inhibits cytokinesis cell spreading and locomotion in Dictyostelium. Cell Struct Funct 22:335–345

    Article  CAS  PubMed  Google Scholar 

  24. Willis JH, Munro E, Lyczak R, Bowerman B (2006) Conditional dominant mutations in the Caenorhabditis elegans gene act-2 identify cytoplasmic and muscle roles for a redundant actin isoform. Mol Biol Cell 17:1051–1064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Stone S, Shaw JE (1993) A Caenorhabditis elegans act-4::lacZ fusion: use as a transformation marker and analysis of tissue-specific expression. Gene 131:167–173

    Article  CAS  PubMed  Google Scholar 

  26. MacQueen AJ, Baggett JJ, Perumov N, Bauer RA, Januszewski T, Schriefer L, Waddle JA (2005) ACT-5 is an essential Caenorhabditis elegans actin required for intestinal microvilli formation. Mol Biol Cell 16:3247–3259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Victor Ambros. (2006) Shaham S (ed) WormBook: Methods in Cell Biology (January 02, 2006), WormBook, ed. The C. elegans Research Community, WormBook, https://doi.org/10.1895/wormbook.1.49.1, http://www.wormbook.org.

  28. McCarter J, Bartlett B, Dang T, Schedl T (1997) Soma-germ cell interactions in Caenorhabditis elegans: multiple events of hermaphrodite germline development require the somatic sheath and spermathecal lineages. Dev Biol 181:121–143

    Article  CAS  PubMed  Google Scholar 

  29. Dong L, Cornaglia M, Krishnamani G, Zhang J, Mouchiroud L, Lehnert T, Auwerx J, Gijs MAM (2018) Reversible and long-term immobilization in a hydrogel-microbead matrix for high-resolution imaging of Caenorhabditis elegans and other small organisms. PLoS One 13:e0193989

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Hwang H, Barnes E, Matsunaga Y, Benian GM, Ono S, Lu H (2016) Muscle contraction phenotypic analysis enabled by optogenetics reveals functional relationships of sarcomere components in Caenorhabditis elegans. Sci Rep 6:19900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Krajniak J, Lu H (2010) Long-term high-resolution imaging and culture of C elegans in chip-gel hybrid microfluidic device for developmental studies. Lab Chip 10:1862–1868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lengsfeld AM, Low I, Wieland T, Dancker P, Hasselbach W (1974) Interaction of phalloidin with actin. Proc Natl Acad Sci U S A 71:2803–2807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wulf E, Deboben A, Bautz FA, Faulstich H, Wieland T (1979) Fluorescent phallotoxin a tool for the visualization of cellular actin. Proc Natl Acad Sci U S A 76:4498–4502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Strome S (1986) Fluorescence visualization of the distribution of microfilaments in gonads and early embryos of the nematode Caenorhabditis elegans. J Cell Biol 103:2241–2252

    Article  CAS  PubMed  Google Scholar 

  35. Waterston RH, Hirsh D, Lane TR (1984) Dominant mutations affecting muscle structure in Caenorhabditis elegans that map near the actin gene cluster. J Mol Biol 180:473–496

    Article  CAS  PubMed  Google Scholar 

  36. Ono S (2001) The Caenorhabditis elegans unc-78 gene encodes a homologue of actin-interacting protein 1 required for organized assembly of muscle actin filaments. J Cell Biol 152:1313–1319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hayashi Y, Ono K, Ono S (2019) Mutations in Caenorhabditis elegans actin which are equivalent to human cardiomyopathy mutations cause abnormal actin aggregation in nematode striated muscle. F1000Res 8:279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Barnes DE, Hwang H, Ono K, Lu H, Ono S (2016) Molecular evolution of troponin I and a role of its N-terminal extension in nematode locomotion. Cytoskeleton 73:117–130

    Article  CAS  PubMed  Google Scholar 

  39. Stiernagle T (2006) Maintenance of C elegans. WormBook ed The C elegans Research Community, PubMed PMID: 18050451; PMCID: PMC4781397 https://doi.org/10.1895/wormbook.1.101.1

  40. Hall DH, Altun ZF (2008) C elegans atlas. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  41. Lessard JL (1988) Two monoclonal antibodies to actin: one muscle selective and one generally reactive. Cell Motil Cytoskeleton 10:349–362

    Article  CAS  PubMed  Google Scholar 

  42. Porta-de-la-Riva M, Fontrodona L, Villanueva A, Ceron J (2012) Basic Caenorhabditis elegans methods: synchronization and observation. J Vis Exp 10:e4019

    Google Scholar 

  43. Tse YC, Werner M, Longhini KM, Labbe JC, Goldstein B, Glotzer M (2012) RhoA activation during polarization and cytokinesis of the early Caenorhabditis elegans embryo is differentially dependent on NOP-1 and CYK-4. Mol Biol Cell 23:4020–4031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zilberman Y, Abrams J, Anderson DC, Nance J (2017) Cdc42 regulates junctional actin but not cell polarization in the Caenorhabditis elegans epidermis. J Cell Biol 216:3729–3744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Higuchi-Sanabria R, Paul JW 3rd, Durieux J, Benitez C, Frankino PA, Tronnes SU, Garcia G, Daniele JR, Monshietehadi S, Dillin A (2018) Spatial regulation of the actin cytoskeleton by HSF-1 during aging. Mol Biol Cell 29:2522–2527

    Article  PubMed  PubMed Central  Google Scholar 

  46. Xu S, Chisholm AD (2011) A Gαq-Ca2+ signaling pathway promotes actin-mediated epidermal wound closure in C elegans. Curr Biol 21:1960–1967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shivas JM, Skop AR (2012) Arp2/3 mediates early endosome dynamics necessary for the maintenance of PAR asymmetry in Caenorhabditis elegans. Mol Biol Cell 23:1917–1927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Schindler AJ, Sherwood DR (2011) The transcription factor HLH-2/E/daughterless regulates anchor cell invasion across basement membrane in C elegans. Dev Biol 357:380–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wirshing ACE, Cram EJ (2017) Myosin activity drives actomyosin bundle formation and organization in contractile cells of the Caenorhabditis elegans spermatheca. Mol Biol Cell 28:1937–1949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Szumowski SC, Estes KA, Popovich JJ, Botts MR, Sek G, Troemel ER (2016) Small GTPases promote actin coat formation on microsporidian pathogens traversing the apical membrane of Caenorhabditis elegans intestinal cells. Cell Microbiol 18:30–45

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoichiro Ono .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ono, S. (2022). Imaging of Actin Cytoskeleton in the Nematode Caenorhabditis elegans. In: Gavin, R.H. (eds) Cytoskeleton . Methods in Molecular Biology, vol 2364. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1661-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1661-1_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1660-4

  • Online ISBN: 978-1-0716-1661-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics