Skip to main content

Computational Analysis of Transposable Elements and CircRNAs in Plants

  • Protocol
  • First Online:
Plant Circular RNAs

Abstract

This chapter provides two main contributions: (1) a description of computational tools and databases used to identify and analyze transposable elements (TEs) and circRNAs in plants; and (2) data analysis on public TE and circRNA data. Our goal is to highlight the primary information available in the literature on circular noncoding RNAs and transposable elements in plants. The exploratory analysis performed on publicly available circRNA and TEs data help discuss four sequence features. Finally, we investigate the association on circRNAs:TE in plants in the model organism Arabidopsis thaliana.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Miller WJ, Capy P (2004) Mobile genetic elements as natural tools for genome evolution. Mobile Genetic Elements 260:001–020. https://doi.org/10.1385/1-59259-755-6:001

    Article  CAS  Google Scholar 

  2. Makałowski W, Gotea V, Pande A et al (2019) Transposable elements: classification, identification, and their use as a tool for comparative genomics. Methods Mol Biol 1910:177–207

    Article  PubMed  CAS  Google Scholar 

  3. Wicker T, Sabot F, Hua-Van A et al (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973–982

    Article  CAS  PubMed  Google Scholar 

  4. Jurka J, Kapitonov VV, Kohany O et al (2007) Repetitive sequences in complex genomes: structure and evolution. Annu Rev Genomics Hum Genet 8:241–259. https://doi.org/10.1146/annurev.genom.8.080706.092416

    Article  CAS  PubMed  Google Scholar 

  5. Bourque G, Burns KH, Gehring M et al (2018) Ten things you should know about transposable elements. Genome Biol 19:199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hadjiargyrou M, Delihas N (2013) The intertwining of transposable elements and non-coding RNAs. Int J Mol Sci 14:13307–13328

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Chen L, Zhang P, Fan Y et al (2018) Circular RNAs mediated by transposons are associated with transcriptomic and phenotypic variation in maize. New Phytol:1292–1306. https://doi.org/10.1111/nph.14901

  8. Hou J, Lu D, Mason AS et al (2019) Non-coding RNAs and transposable elements in plant genomes: emergence, regulatory mechanisms and roles in plant development and stress responses. Planta 250:23–40

    Article  CAS  PubMed  Google Scholar 

  9. Salzman J, Gawad C, Wang PL et al (2012) Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One 7:e30733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jeck WR, Sorrentino JA, Wang K et al (2013) Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19:141–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fan X, Zhang X, Wu X et al (2015) Single-cell RNA-seq transcriptome analysis of linear and circular RNAs in mouse preimplantation embryos. Genome Biol 16:148

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Lai X, Bazin J, Webb S et al (2018) CircRNAs in plants. Adv Exp Med Biol 1087:329–343

    Article  CAS  PubMed  Google Scholar 

  13. Zhao W, Chu S, Jiao Y (2019) Present scenario of circular RNAs (circRNAs) in plants. Front Plant Sci 10:379

    Article  PubMed  PubMed Central  Google Scholar 

  14. Robic A, Kühn C (2020) Beyond Back splicing, a still poorly explored world: non-canonical circular RNAs. Genes 11. https://doi.org/10.3390/genes11091111

  15. Ye C, Chen L, Liu C et al (2015) Widespread noncoding circular RNAs in plants. New Phytol 208:88–95

    Article  CAS  PubMed  Google Scholar 

  16. Lu T, Cui L, Zhou Y et al (2015) Transcriptome-wide investigation of circular RNAs in rice. RNA 21:2076–2087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pedro DLF, Lorenzetti APR, Domingues DS et al (2018) PlaNC-TE: a comprehensive knowledgebase of non-coding RNAs and transposable elements in plants. Database 2018:1–7

    Article  PubMed  CAS  Google Scholar 

  18. Chen L, Yu Y, Zhang X et al (2016) PcircRNA_finder: a software for circRNA prediction in plants. Bioinformatics 32:3528–3529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Memczak S, Jens M, Elefsinioti A et al (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495:333–338

    Article  CAS  PubMed  Google Scholar 

  20. Zhang X, Wang H, Zhang Y et al (2014) Complementary sequence-mediated exon circularization. Cell 159:134–147

    Article  CAS  PubMed  Google Scholar 

  21. Sun P, Li G (2019) CircCode: a powerful tool for identifying circRNA coding ability. Front Genet 10:981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with bowtie 2. Nat Methods 9:357–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dobin A, Davis CA, Schlesinger F et al (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21

    Article  CAS  PubMed  Google Scholar 

  25. Ito EA, Katahira I, da Rocha Vicente FF et al (2018) BASiNET-BiologicAl Sequences NETwork: a case study on coding and non-coding RNAs identification. Nucleic Acids Res 46:e96

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Sun P, Wang H, Li G (2020) Rcirc: an R package for circRNA analyses and visualization. Front Genet 11:548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gao Y, Zhang J, Zhao F (2018) Circular RNA identification based on multiple seed matching. Brief Bioinform 19:803–810

    Article  CAS  PubMed  Google Scholar 

  28. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Gu Z, Gu L, Eils R et al (2014) Circlize implements and enhances circular visualization in R. Bioinformatics 30:2811–2812. https://doi.org/10.1093/bioinformatics/btu393

    Article  CAS  PubMed  Google Scholar 

  30. Wilkinson L (2011) ggplot2: Elegant Graphics for Data Analysis by WICKHAM, H. Biometrics 67:678–679. https://doi.org/10.1111/j.1541-0420.2011.01616.x

    Article  Google Scholar 

  31. Chu Q, Zhang X, Zhu X et al (2017) PlantcircBase: a database for plant circular RNAs. Mol Plant 10:1126–1128

    Article  CAS  PubMed  Google Scholar 

  32. Gao Y, Wang J, Zhao F (2015) CIRI: an efficient and unbiased algorithm for de novo circular RNA identification. Genome Biol 16:4. https://doi.org/10.1186/s13059-014-0571-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang X-O, Dong R, Zhang Y et al (2016) Diverse alternative back-splicing and alternative splicing landscape of circular RNAs. Genome Res 26:1277–1287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ye J, Wang L, Li S, Zhang Q et al (2019) AtCircDB: a tissue-specific database for Arabidopsis circular RNAs. Brief Bioinform 20:58–65

    Article  CAS  PubMed  Google Scholar 

  35. Wang K, Wang C, Guo B et al (2019) CropCircDB: a comprehensive circular RNA resource for crops in response to abiotic stress. Database 2019:baz053. https://doi.org/10.1093/database/baz053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang P, Meng X, Chen H et al (2017) PlantCircNet: a database for plant circRNA-miRNA-mRNA regulatory networks. Database 2017:bax089. https://doi.org/10.1093/database/bax089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang J, Hao Z, Yin S et al (2020) GreenCircRNA: a database for plant circRNAs that act as miRNA decoys. Database 2020. https://doi.org/10.1093/database/baaa039

  38. Ghosal S, Das S, Sen R et al (2013) Circ2Traits: a comprehensive database for circular RNA potentially associated with disease and traits. Front Genet 4:283

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Meng X, Hu D, Zhang P et al (2019) CircFunBase: a database for functional circular RNAs. Database 2019:baz003. https://doi.org/10.1093/database/baz003

    Article  CAS  PubMed Central  Google Scholar 

  40. Paschoal AR, Maracaja-Coutinho V, Setubal JC et al (2012) Non-coding transcription characterization and annotation: a guide and web resource for non-coding RNA databases. RNA Biol 9:274–282

    Article  CAS  PubMed  Google Scholar 

  41. Maracaja-Coutinho V, Paschoal AR, Caris-Maldonado JC et al (1912) Noncoding RNAs databases: current status and trends. Methods Mol Biol 2019:251–285

    Google Scholar 

  42. Sun X, Zuo F, Ru Y et al (2015) SplicingTypesAnno: annotating and quantifying alternative splicing events for RNA-Seq data. Comput Methods Prog Biomed 119:53–62

    Article  Google Scholar 

  43. Pages H, Aboyoun P, Gentleman R et al (2016) Biostrings: string objects representing biological sequences, and matching algorithms. R package version 2:10–18129

    Google Scholar 

  44. Lawrence M, Huber W, Pagès H et al (2013) Software for computing and annotating genomic ranges. PLoS Comput Biol 9:e1003118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang K, Singh D, Zeng Z et al (2010) MapSplice: accurate mapping of RNA-seq reads for splice junction discovery. Nucleic Acids Res 38:e178

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Fu X, Liu R. CircRNAFinder: a tool for identifying circular RNAs using RNA-Seq data. Proceedings of the 6th International Conference on Bioinformatics and Computational Biology, BICOB. 2014. Available: https://www.researchgate.net/profile/Xing_Fu3/publication/280068964_Circrnafinder_A_tool_for_identifying_circular_RNAs_using_RNA-Seq_data/links/55a65a5b08aebe1d24699e14

  47. Song X, Zhang N, Han P et al (2016) Circular RNA profile in gliomas revealed by identification tool UROBORUS. Nucleic Acids Res 44:e87

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Abrusán G, Grundmann N, DeMester L et al (2009) TEclass--a tool for automated classification of unknown eukaryotic transposable elements. Bioinformatics 25:1329–1330

    Article  PubMed  CAS  Google Scholar 

  49. Hoede C, Arnoux S, Moisset M et al (2014) PASTEC: an automatic transposable element classification tool. PLoS One 9:e91929

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Feschotte C, Keswani U, Ranganathan N et al (2009) Exploring repetitive DNA landscapes using REPCLASS, a tool that automates the classification of transposable elements in eukaryotic genomes. Genome Biol Evol 1:205–220

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. da Cruz MHP, Domingues DS, Saito PTM et al (2020) TERL: classification of transposable elements by convolutional neural networks. Brief Bioinform. https://doi.org/10.1093/bib/bbaa185

  52. Eddy SR (1998) Profile hidden Markov models. Bioinformatics 14:755–763

    Article  CAS  PubMed  Google Scholar 

  53. Goodfellow I, Bengio Y, Courville A (2016) Deep Learning. MIT Press, Cambridge, Massachusetts

    Google Scholar 

  54. Zou J, Huss M, Abid A et al (2019) A primer on deep learning in genomics. Nat Genet 51:12–18

    Article  CAS  PubMed  Google Scholar 

  55. Min S, Lee B, Yoon S (2016) Deep learning in bioinformatics. Briefings in Bioinformatics:bbw068. https://doi.org/10.1093/bib/bbw068

  56. Kelley DR, Snoek J, Rinn JL (2016) Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks. Genome Res 26:990–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Quang D, Xie X (2016) DanQ: a hybrid convolutional and recurrent deep neural network for quantifying the function of DNA sequences. Nucleic Acids Res 44:e107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Zeng H, Edwards MD, Liu G et al (2016) Convolutional neural network architectures for predicting DNA-protein binding. Bioinformatics 32:i121–i127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nakano FK, Mastelini SM, Barbon S, et al. Improving Hierarchical Classification of Transposable Elements using Deep Neural Networks. 2018 International Joint Conference on Neural Networks (IJCNN). 2018. https://doi.org/10.1109/ijcnn.2018.8489461

  60. Spannagl M, Nussbaumer T, Bader KC et al (2016) PGSB PlantsDB: updates to the database framework for comparative plant genome research. Nucleic Acids Res 44:D1141–D1147

    Article  CAS  PubMed  Google Scholar 

  61. Bao W, Kojima KK, Kohany O (2015) Repbase update, a database of repetitive elements in eukaryotic genomes. Mob DNA 6:11

    Article  PubMed  PubMed Central  Google Scholar 

  62. Ouyang S, Buell CR (2004) The TIGR plant repeat databases: a collective resource for the identification of repetitive sequences in plants. Nucleic Acids Res 32:D360–D363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Li S-F, Zhang G-J, Zhang X-J et al (2016) DPTEdb, an integrative database of transposable elements in dioecious plants. Database 2016:baw078. https://doi.org/10.1093/database/baw078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Llorens C, Futami R, Covelli L et al (2011) The gypsy database (GyDB) of mobile genetic elements: release 2.0. Nucleic Acids Res 39:D70–D74

    Article  CAS  PubMed  Google Scholar 

  65. Bousios A, Minga E, Kalitsou N et al (2012) MASiVEdb: the Sirevirus plant retrotransposon database. BMC Genomics 13:158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lorenzetti APR, de Antonio GYA, Paschoal AR, Domingues DS (2016) PlanTE-MIR DB: a database for transposable element-related microRNAs in plant genomes. Funct Integr Genomics 16:235–242

    Article  CAS  Google Scholar 

  67. Chen J, Hu Q, Zhang Y et al (2014) P-MITE: a database for plant miniature inverted-repeat transposable elements. Nucleic Acids Res 42:D1176–D1181

    Article  CAS  PubMed  Google Scholar 

  68. Amselem J, Cornut G, Choisne N et al (2019) RepetDB: a unified resource for transposable element references. Mob DNA 10:6

    Article  PubMed  PubMed Central  Google Scholar 

  69. Vassetzky NS, Kramerov DA (2013) SINEBase: a database and tool for SINE analysis. Nucleic Acids Res 41:D83–D89

    Article  CAS  PubMed  Google Scholar 

  70. Du J, Grant D, Tian Z et al (2010) SoyTEdb: a comprehensive database of transposable elements in the soybean genome. BMC Genomics 11:113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Ma B, Li T, Xiang Z, He N (2015) MnTEdb, a collective resource for mulberry transposable elements. Database 2015. https://doi.org/10.1093/database/bav004

  72. Pearson WR, Lipman DJ (1988) Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A 85:2444–2448. https://doi.org/10.1073/pnas.85.8.2444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Oliveira LS, Amorim TS, Pedro DLF et al A practical guide on computational tools and databases for transposable elements in plants. Springer, New York

    Google Scholar 

  74. Ye C-Y, Zhang X, Chu Q et al (2017) Full-length sequence assembly reveals circular RNAs with diverse non-GT/AG splicing signals in rice. RNA Biol 3:1055–1063. https://doi.org/10.1080/15476286.2016.1245268

    Article  Google Scholar 

  75. Zhang P, Li S, Chen M (2020) Characterization and function of circular RNAs in plants. Front Mol Biosci 7:91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Galindo-González L, Mhiri C, Deyholos MK et al (2017) LTR-retrotransposons in plants: Engines of evolution. Gene 626:14–25. https://doi.org/10.1016/j.gene.2017.04.051

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Rossi Paschoal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Oliveira, L.S. et al. (2021). Computational Analysis of Transposable Elements and CircRNAs in Plants. In: Vaschetto, L.M. (eds) Plant Circular RNAs. Methods in Molecular Biology, vol 2362. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1645-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1645-1_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1644-4

  • Online ISBN: 978-1-0716-1645-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics