Skip to main content

In Vitro Models for the Study of the Intracellular Activity of Antibiotics

  • Protocol
  • First Online:
Bacterial Persistence

Abstract

Intracellular bacteria are poorly responsive to antibiotic treatment. Pharmacological studies are thus needed to determine the antibiotics which are the most potent or effective against intracellular bacteria as well as to explore the reasons for poor bacterial responsiveness. An in vitro pharmacodynamic model is described, consisting of (1) phagocytosis of preopsonized bacteria by eukaryotic cells, (2) elimination of noninternalized bacteria with gentamicin, (3) incubation of infected cells with antibiotics, and (4) determination of surviving bacteria by viable cell counting and normalization of the counts based on sample protein content. The use of strains expressing fluorescent proteins under the control of an inducible promoter allows to follow intracellular bacterial division at the individual level and therefore to monitor bacterial persisters that do not multiply anymore.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Garzoni C, Kelley WL (2011) Return of the Trojan horse: intracellular phenotype switching and immune evasion by Staphylococcus aureus. EMBO Mol Med 3:115–117

    Article  CAS  Google Scholar 

  2. Anderson GG, Martin SM, Hultgren SJ (2004) Host subversion by formation of intracellular bacterial communities in the urinary tract. Microbes Infect 6:1094–1101

    Article  Google Scholar 

  3. Cossart P, Sansonetti PJ (2004) Bacterial invasion: the paradigms of enteroinvasive pathogens. Science 304:242–248

    Article  CAS  Google Scholar 

  4. Mehlitz A, Rudel T (2013) Modulation of host signaling and cellular responses by Chlamydia. Cell Commun Signal 11:90

    Article  CAS  Google Scholar 

  5. Rohde M, Chhatwal GS (2013) Adherence and invasion of streptococci to eukaryotic cells and their role in disease pathogenesis. Curr Top Microbiol Immunol 368:83–110

    PubMed  Google Scholar 

  6. Alder KD, Lee I, Munger AM, Kwon HK et al (2020) Intracellular Staphylococcus aureus in bone and joint infections: a mechanism of disease recurrence, inflammation, and bone and cartilage destruction. Bone 141:115568

    Article  CAS  Google Scholar 

  7. Del Mar CM, Torrents E (2020) Differential adaptability between reference strains and clinical isolates of Pseudomonas aeruginosa into the lung epithelium intracellular lifestyle. Virulence 11:862–876

    Article  Google Scholar 

  8. Adams KN, Takaki K, Connolly LE et al (2011) Drug tolerance in replicating mycobacteria mediated by a macrophage-induced efflux mechanism. Cell 145:39–53

    Article  CAS  Google Scholar 

  9. Helaine S, Cheverton AM, Watson KG et al (2014) Internalization of Salmonella by macrophages induces formation of nonreplicating persisters. Science 343:204–208

    Article  CAS  Google Scholar 

  10. Carryn S, Chanteux H, Seral C et al (2003) Intracellular pharmacodynamics of antibiotics. Infect Dis Clin N Am 17:615–634

    Article  Google Scholar 

  11. Van Bambeke F, Barcia-Macay M, Lemaire S, Tulkens PM (2006) Cellular pharmacodynamics and pharmacokinetics of antibiotics: current views and perspectives. Curr Opin Drug Discov Devel 9:218–230

    PubMed  Google Scholar 

  12. Buyck JM, Tulkens PM, Van Bambeke F (2013) Pharmacodynamic evaluation of the intracellular activity of antibiotics towards Pseudomonas aeruginosa PAO1 in a model of THP-1 human monocytes. Antimicrob Agents Chemother 57:2310–2318

    Article  CAS  Google Scholar 

  13. Chalhoub H, Harding SV, Tulkens PM, Van Bambeke F (2019) Influence of pH on the activity of finafloxacin against extracellular and intracellular Burkholderia thailandensis, Yersinia pseudotuberculosis and Francisella philomiragia and on its cellular pharmacokinetics in THP-1 monocytes. Clin Microbiol Infect 26:1254.e1–1254.e8

    Google Scholar 

  14. Lemaire S, Kosowska-Shick K, Appelbaum PC et al (2010) Cellular pharmacodynamics of the novel biaryloxazolidinone radezolid: studies with infected phagocytic and nonphagocytic cells, using Staphylococcus aureus, Staphylococcus epidermidis, Listeria monocytogenes, and Legionella pneumophila. Antimicrob Agents Chemother 54:2549–2559

    Article  CAS  Google Scholar 

  15. Lemaire S, Kosowska-Shick K, Appelbaum PC et al (2011) Activity of moxifloxacin against intracellular community-acquired methicillin-resistant Staphylococcus aureus: comparison with clindamycin, linezolid and co-trimoxazole and attempt at defining an intracellular susceptibility breakpoint. J Antimicrob Chemother 66:596–607

    Article  CAS  Google Scholar 

  16. Lemaire S, Glupczynski Y, Duval V et al (2009) Activities of ceftobiprole and other cephalosporins against extracellular and intracellular (THP-1 macrophages and keratinocytes) forms of methicillin-susceptible and methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 53:2289–2297

    Article  CAS  Google Scholar 

  17. Lemaire S, Olivier A, Van Bambeke F et al (2008) Restoration of susceptibility of intracellular methicillin-resistant Staphylococcus aureus to beta-lactams: comparison of strains, cells, and antibiotics. Antimicrob Agents Chemother 52:2797–2805

    Article  CAS  Google Scholar 

  18. Peyrusson F, Varet H, Nguyen TK et al (2020) Intracellular Staphylococcus aureus persisters upon antibiotic exposure. Nat Commun 11:2200

    Article  CAS  Google Scholar 

  19. Barcia-Macay M, Seral C, Mingeot-Leclercq MP et al (2006) Pharmacodynamic evaluation of the intracellular activities of antibiotics against Staphylococcus aureus in a model of THP-1 macrophages. Antimicrob Agents Chemother 50:841–851

    Article  CAS  Google Scholar 

  20. Lemaire S, Tulkens PM, Van Bambeke F (2011) Contrasting effects of acidic pH on the extracellular and intracellular activities of the anti-gram-positive fluoroquinolones moxifloxacin and delafloxacin against Staphylococcus aureus. Antimicrob Agents Chemother 55:649–658

    Article  CAS  Google Scholar 

  21. Lemaire S, Van Bambeke F, Appelbaum PC, Tulkens PM (2009) Cellular pharmacokinetics and intracellular activity of torezolid (TR-700): studies with human macrophage (THP-1) and endothelial (HUVEC) cell lines. J Antimicrob Chemother 64:1035–1043

    Article  CAS  Google Scholar 

  22. Lemaire S, Van Bambeke F, Tulkens PM (2009) Cellular accumulation and pharmacodynamic evaluation of the intracellular activity of CEM-101, a novel fluoroketolide, against Staphylococcus aureus, Listeria monocytogenes, and Legionella pneumophila in human THP-1 macrophages. Antimicrob Agents Chemother 53:3734–3743

    Article  CAS  Google Scholar 

  23. Melard A, Garcia LG, Das D et al (2013) Activity of ceftaroline against extracellular (broth) and intracellular (THP-1 monocytes) forms of methicillin-resistant Staphylococcus aureus: comparison with vancomycin, linezolid and daptomycin. J Antimicrob Chemother 68:648–658

    Article  CAS  Google Scholar 

  24. Peyrusson F, Butler D, Tulkens PM, Van Bambeke F (2015) Cellular pharmacokinetics and intracellular activity of the novel peptide deformylase inhibitor GSK1322322 against Staphylococcus aureus laboratory and clinical strains with various resistance phenotypes: studies with human THP-1 monocytes and J774 murine macrophages. Antimicrob Agents Chemother 59:5747–5760

    Article  CAS  Google Scholar 

  25. Peyrusson F, Tulkens PM, Van Bambeke F (2018) Cellular pharmacokinetics and intracellular activity of gepotidacin against Staphylococcus aureus isolates with different resistance phenotypes in models of cultured phagocytic cells. Antimicrob Agents Chemother 62:e02245–e02217

    Article  CAS  Google Scholar 

  26. Peyrusson F, Van Wessem A, Dieppois G et al (2020) Cellular pharmacokinetics and intracellular activity of the bacterial fatty acid synthesis inhibitor, afabicin desphosphono against different resistance phenotypes of Staphylococcus aureus in models of cultured phagocytic cells. Int J Antimicrob Agents 55:105848

    Article  CAS  Google Scholar 

  27. Sandberg A, Jensen KS, Baudoux P et al (2010) Intra- and extracellular activities of dicloxacillin against Staphylococcus aureus in vivo and in vitro. Antimicrob Agents Chemother 54:2391–2400

    Article  CAS  Google Scholar 

  28. Sandberg A, Jensen KS, Baudoux P et al (2010) Intra- and extracellular activity of linezolid against Staphylococcus aureus in vivo and in vitro. J Antimicrob Chemother 65:962–973

    Article  CAS  Google Scholar 

  29. U.S. Department of Health and Human Services (2009) Biosafety in microbiological and biomedical laboratories, vol 5. Available via https://www.cdc.gov/labs/pdf/CDC-BiosafetymicrobiologicalBiomedicalLaboratories-2009-P.pdf. Accessed 6 Oct 2020

    Google Scholar 

  30. Lowry OH, Rosebrough AL, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    Article  CAS  Google Scholar 

  31. Strober W (2001) Trypan blue exclusion test of cell viability. Curr Protoc Immunol Appendix 3:Appendix 3B

    Google Scholar 

  32. Vassault A (1987) Lactate dehydrogenase. In: Bergemeyer HU (ed) Methods in enzymatic analysis, vol III: enzyme I oxydoreductases, transferases. VHC Publishers, Veinheim

    Google Scholar 

  33. Seral C, Van Bambeke F, Tulkens PM (2003) Quantitative analysis of gentamicin, azithromycin, telithromycin, ciprofloxacin, moxifloxacin, and oritavancin (LY333328) activities against intracellular Staphylococcus aureus in mouse J774 macrophages. Antimicrob Agents Chemother 47:2283–2292

    Article  CAS  Google Scholar 

  34. Garcia LG, Lemaire S, Kahl BC et al (2012) Influence of the protein kinase C activator phorbol myristate acetate on the intracellular activity of antibiotics against hemin- and menadione-auxotrophic small-colony variant mutants of Staphylococcus aureus and their wild-type parental strain in human THP-1 cells. Antimicrob Agents Chemother 56:6166–6174

    Article  CAS  Google Scholar 

  35. Nguyen TK, Peyrusson F, Dodémont M et al (2020) The persister character of clinical isolates of Staphylococcus aureus contributes to faster evolution to resistance and higher survival in THP-1 monocytes: a study with moxifloxacin. Front Microbiol 11:587364

    Article  Google Scholar 

  36. Drevets DA, Campbell PA (1991) Roles of complement and complement receptor type 3 in phagocytosis of Listeria monocytogenes by inflammatory mouse peritoneal macrophages. Infect Immun 59:2645–2652

    Article  CAS  Google Scholar 

  37. Seral C, Carryn S, Tulkens PM, Van Bambeke F (2003) Influence of P-glycoprotein and MRP efflux pump inhibitors on the intracellular activity of azithromycin and ciprofloxacin in macrophages infected by Listeria monocytogenes or Staphylococcus aureus. J Antimicrob Chemother 51:1167–1173

    Article  CAS  Google Scholar 

  38. Carryn S, Van Bambeke F, Mingeot-Leclercq MP, Tulkens PM (2002) Comparative intracellular (THP-1 macrophage) and extracellular activities of beta-lactams, azithromycin, gentamicin, and fluoroquinolones against Listeria monocytogenes at clinically relevant concentrations. Antimicrob Agents Chemother 46:2095–2103

    Article  CAS  Google Scholar 

  39. Lemaire S, Bogdanovitch T, Chavez-Bueno S et al (2006) Bactericidal activity of ceragenin CSA-13 against intracellular MSSA, hospital-acquired (HA) and Community-acquired (CA) MRSA, and VISA in THP-1 macrophages: relation to cellular toxicity ? Poster presented at the 46th Interscience Conference on Antimicrobial Agents and Chemotherapy, San Francisco, USA, 27–30 Sept 2006

    Google Scholar 

Download references

Acknowledgments

Intracellular infection models have been developed thanks to the financial support of the Belgian Fonds National de la Recherche Scientifique, the Interuniversity Attraction Poles initiated by the Belgian Science Policy Office, and the Brussels and Walloon Regions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Françoise Van Bambeke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Peyrusson, F. et al. (2021). In Vitro Models for the Study of the Intracellular Activity of Antibiotics. In: Verstraeten, N., Michiels, J. (eds) Bacterial Persistence. Methods in Molecular Biology, vol 2357. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1621-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1621-5_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1620-8

  • Online ISBN: 978-1-0716-1621-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics