Skip to main content

Methodologies for Discovery and Quantitative Profiling of sRNAs in Potato

  • Protocol
  • First Online:
Solanum tuberosum

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2354))

Abstract

Small RNAs (sRNAs) are short noncoding RNAs involved in the regulation of a wide range of biological processes in plants. Advances in high-throughput sequencing and development of new computational tools had facilitated the discovery of different classes of sRNAs, their quantification, and elucidation of their functional role in gene expression regulation by target transcript predictions. The workflow presented here allows identification of different sRNA species: known and novel potato miRNAs, and their sequence variants (isomiRs), as well as identification of phased small interfering RNAs (phasiRNAs). Moreover, it includes steps for differential expression analysis to search for regulated sRNAs across different tested biological conditions. In addition, it describes two different methods for predicting sRNA targets, in silico prediction, and degradome sequencing data analysis. All steps of the workflow are written in a clear and user-friendly way; thus they can be followed also by the users with minimal bioinformatics knowledge. We also included several in-house scripts together with valuable notes to facilitate data (pre)processing steps and to reduce the analysis time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pritchard CC, Cheng HH, Tewari M (2012) MicroRNA profiling: approaches and considerations. Nat Rev Genet 13:358–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bilichak A, Golubov A, Kovalchuk I (2017) Small RNA library preparation and Illumina sequencing in plants. In: Kovalchuk I (ed) Plant epigenetics: methods and protocols. Springer, Boston, MA, pp 189–196

    Chapter  Google Scholar 

  3. Shore S, Henderson JM, Lebedev A et al (2016) Small RNA library preparation method for next-generation sequencing using chemical modifications to prevent adapter dimer formation. PLoS One 11:1–26

    Article  CAS  Google Scholar 

  4. Kozomara A, Birgaoanu M, Griffiths-Jones S (2019) MiRBase: from microRNA sequences to function. Nucleic Acids Res 47:155–162

    Article  CAS  Google Scholar 

  5. Axtell MJ, Meyers BC (2018) Revisiting criteria for plant MicroRNA annotation in the era of big data. Plant Cell 30:272–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Meyers BC, Axtell MJ, Bartel B et al (2008) Criteria for annotation of plant MicroRNAs. Plant Cell 20:3186–3190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Axtell MJ (2013) ShortStack: comprehensive annotation and quantification of small RNA genes. RNA 19:740–751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Budak H, Bulut R, Kantar M et al (2016) MicroRNA nomenclature and the need for a revised naming prescription. Brief Funct Genomics 15:65–71

    CAS  PubMed  Google Scholar 

  9. Ambros V, Bartel B, Bartel DP et al (2003) A uniform system for microRNA annotation. RNA 9:277–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42:68–73

    Article  CAS  Google Scholar 

  11. Budak H, Akpinar BA (2015) Plant miRNAs: biogenesis, organization and origins. Funct Integr Genomics 15:523–531

    Article  CAS  PubMed  Google Scholar 

  12. Debat HJ, Ducasse D a. (2014) Plant microRNAs: recent advances and future challenges. Plant Mol Biol Report 32:1257–1269

    Article  CAS  Google Scholar 

  13. Lu C, Lu C, Kulkarni K et al (2006) MicroRNAs and other small RNAs enriched in the Arabidopsis RNA-dependent RNA polymerase-2 mutant. Genome Res 16:1276–1288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen H-M, Chen L-T, Patel K et al (2010) 22-Nucleotide RNAs trigger secondary siRNA biogenesis in plants. Proc Natl Acad Sci U S A 107:15269–15274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cuperus JT, Carbonell A, Fahlgren N et al (2010) Unique functionality of 22-nt miRNAs in triggering RDR6-dependent siRNA biogenesis from target transcripts in Arabidopsis. Nat Struct Mol Biol 17:997–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kasschau KD, Fahlgren N, Chapman EJ et al (2007) Genome-wide profiling and analysis of Arabidopsis siRNAs. PLoS Biol 5:0479–0493

    Article  CAS  Google Scholar 

  17. Gebert D, Hewel C, Rosenkranz D (2017) Unitas: the universal tool for annotation of small RNAs. BMC Genomics 18:1–14

    Article  CAS  Google Scholar 

  18. Chen H-M, Li Y-H, Wu S-H (2007) Bioinformatic prediction and experimental validation of a microRNA-directed tandem trans-acting siRNA cascade in Arabidopsis. Proc Natl Acad Sci U S A 104:3318–3323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Morgado L, Johannes F (2017) Computational tools for plant small RNA detection and categorization. Brief Bioinform 20:1–12

    Google Scholar 

  20. Allen E, Xie Z, Gustafson AM et al (2005) microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121:207–221

    Article  CAS  PubMed  Google Scholar 

  21. Lin Y, Lin L, Lai R et al (2015) MicroRNA390-directed TAS3 cleavage leads to the production of tasiRNA-ARF3/4 during somatic embryogenesis in Dimocarpus longan Lour. Front Plant Sci 6:1–15

    Article  Google Scholar 

  22. Allen E, Howell MD (2010) miRNAs in the biogenesis of trans-acting siRNAs in higher plants. Semin Cell Dev Biol 21:798–804

    Article  CAS  PubMed  Google Scholar 

  23. Djami-Tchatchou AT, Sanan-Mishra N, Ntushelo K et al (2017) Functional roles of microRNAs in agronomically important plants—potential as targets for crop improvement and protection. Front Plant Sci 8:1–24

    Article  Google Scholar 

  24. Srivastava PK, Moturu TR, Pandey P et al (2014) A comparison of performance of plant miRNA target prediction tools and the characterization of features for genome-wide target prediction. BMC Genomics 15:1–15

    Article  Google Scholar 

  25. Ding J, Zhou S, Guan J (2012) Finding microRNA targets in plants: current status and perspectives. Genomics Proteomics Bioinform 10:264–275

    Article  CAS  Google Scholar 

  26. Fahlgren N, Carrington JC (2010) miRNA target prediction in plants. In: Meyers BC, Green PJ (eds) Plant microRNAs, Methods in molecular biology. Humana Press, Totowa, NJ, pp 51–57

    Chapter  Google Scholar 

  27. Xiao B, Yang X, Ye CY et al (2014) A diverse set of miRNAs responsive to begomovirus-associated betasatellite in Nicotiana benthamiana. BMC Plant Biol 14:1–9

    Article  CAS  Google Scholar 

  28. Križnik M, Petek M, Dobnik D et al (2017) Salicylic acid perturbs sRNA-gibberellin regulatory network in immune response of potato to potato virus Y infection. Front Plant Sci 8:1–14

    Article  Google Scholar 

  29. Moyo L, Ramesh SV, Kappagantu M et al (2017) The effects of potato virus Y-derived virus small interfering RNAs of three biologically distinct strains on potato (Solanum tuberosum) transcriptome. Virol J 14:1–17

    Article  CAS  Google Scholar 

  30. Li S, Le B, Ma X et al (2016) Biogenesis of phased siRNAs on membrane-bound polysomes in Arabidopsis. elife 5:1–24

    Article  Google Scholar 

  31. Kertesz M, Iovino N, Unnerstall U et al (2007) The role of site accessibility in microRNA target recognition. Nat Genet 39:1278–1284

    Article  CAS  PubMed  Google Scholar 

  32. Dai X, Zhao PX (2011) PsRNATarget: a plant small RNA target analysis server. Nucleic Acids Res 39:1–5

    Article  CAS  Google Scholar 

  33. Mückstein U, Tafer H, Hackermüller J et al (2006) Thermodynamics of RNA-RNA binding. Bioinformatics 22:1177–1182

    Article  PubMed  CAS  Google Scholar 

  34. Dai X, Zhuang Z, Zhao PX (2011) Computational analysis of miRNA targets in plants: current status and challenges. Brief Bioinform 12:115–121

    Article  CAS  PubMed  Google Scholar 

  35. Huang JC, Morris QD, Frey BJ (2007) Bayesian inference of MicroRNA targets from sequence and expression data. J Comput Biol 14:550–563

    Article  CAS  PubMed  Google Scholar 

  36. Addo-Quaye C, Eshoo TW, Bartel DP et al (2008) Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome. Curr Biol 18:758–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. German MA, Luo S, Schroth G et al (2009) Construction of parallel analysis of RNA ends (PARE) libraries for the study of cleaved miRNA targets and the RNA degradome. Nat Protoc 4:356–362

    Article  CAS  PubMed  Google Scholar 

  38. Llave C (2002) Endogenous and silencing-associated small RNAs in plants. Plant Cell 14:1605–1619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Addo-Quaye C, Miller W, Axtell MJ (2009) CleaveLand: a pipeline for using degradome data to find cleaved small RNA targets. Bioinformatics 25:130–131

    Article  CAS  PubMed  Google Scholar 

  40. Folkes L, Moxon S, Woolfenden HC et al (2012) PAREsnip: a tool for rapid genome-wide discovery of small RNA/target interactions evidenced through degradome sequencing. Nucleic Acids Res 40:1–10

    Article  CAS  Google Scholar 

  41. Zheng Y, Li YF, Sunkar R et al (2012) SeqTar: an effective method for identifying microRNA guided cleavage sites from degradome of polyadenylated transcripts in plants. Nucleic Acids Res 40:1–18

    Article  CAS  Google Scholar 

  42. Huang Y, Niu B, Gao Y et al (2010) CD-HIT suite: a web server for clustering and comparing biological sequences. Bioinformatics 26:680–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Felipe L, De Oliveira V, Christoff AP et al (2013) isomiRID: a framework to identify microRNA isoforms. Bioinformatics 29:2521–2523

    Article  CAS  Google Scholar 

  44. Petek M, Zagorščak M, Ramšak Ž et al (2020) Cultivar-specific transcriptome and pan-transcriptome reconstruction of tetraploid potato. Sci Data 7:1–15

    Article  CAS  Google Scholar 

  45. Law CW, Alhamdoosh M, Su S et al (2018) RNA-seq analysis is easy as 1-2-3 with limma, Glimma and edgeR. F1000Research 5:1–29

    Article  Google Scholar 

  46. Ritchie ME, Phipson B, Wu D et al (2015) Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43:1–13

    Article  CAS  Google Scholar 

  47. Robinson MD, McCarthy DJ, Smyth GK (2009) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Law CW, Chen Y, Smyth GK et al (2014) Voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol 15:1–17

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Henrik Krnec for providing the script sRNA_counts.pl. The work was financed by the Slovenian Research Agency (research core funding No. P4-0165 and projects J4-7636 and J4-1777), and by the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 862858.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maja Križnik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Križnik, M., Zagorščak, M., Gruden, K. (2021). Methodologies for Discovery and Quantitative Profiling of sRNAs in Potato. In: Dobnik, D., Gruden, K., Ramšak, Ž., Coll, A. (eds) Solanum tuberosum. Methods in Molecular Biology, vol 2354. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1609-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1609-3_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1608-6

  • Online ISBN: 978-1-0716-1609-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics