Skip to main content

Single-Cell RNAseq Analysis of lncRNAs

  • Protocol
  • First Online:
Long Non-Coding RNAs in Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2348))

Abstract

Mammalian genomes are pervasively transcribed and a small fraction of RNAs produced codify for proteins. The importance of noncoding RNAs for the maintenance of cell functions is well known (e.g., rRNAs, tRNAs), but only recently it was first demonstrated the involvement of microRNAs (miRNAs) in posttranscriptional regulation and then the activity of long noncoding RNAs (lncRNAs) in the regulation of miRNAs, DNA structure and protein function. LncRNAs have an expression more cell specific than other RNAs and basing on their subcellular localization exert different functions. In this book chapter we consider different protocols to evaluate the expression of lncRNAs at the single cell level using genome-wide approaches. We considered the skeletal muscle as example because the most abundant tissue in mammals involved in the regulation of metabolism and body movement. We firstly described how to isolate the smallest complete contractile system responsible for muscle metabolic and contractile traits (myofibers). We considered how to separate long and short RNAs to allow the sequencing of the full-length transcript using the SMART technique for the retrotranscription. Because of myofibers are multinucleated cells and because of it is better to perform single cell sequencing on fresh tissues we described the single-nucleus sequencing that can be applied to frozen tissues. The chapter concludes with a description of bioinformatics approaches to evaluate differential expression from single-cell or single-nucleus RNA sequencing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bunch H, Lawney BP, Burkholder A, Ma D, Zheng X, Motola S, Fargo DC, Levine SS, Wang YE, Hu G (2016) RNA polymerase II promoter-proximal pausing in mammalian long non-coding genes. Genomics 108(2):64–77. https://doi.org/10.1016/j.ygeno.2016.07.003

    Article  CAS  PubMed  Google Scholar 

  2. Fico A, Fiorenzano A, Pascale E, Patriarca EJ, Minchiotti G (2019) Long non-coding RNA in stem cell pluripotency and lineage commitment: functions and evolutionary conservation. Cell Mol Life Sci 76(8):1459–1471. https://doi.org/10.1007/s00018-018-3000-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chen J, Wang Y, Wang C, Hu JF, Li W (2020) LncRNA functions as a new emerging epigenetic factor in determining the fate of stem cells. Front Genet 11:277. https://doi.org/10.3389/fgene.2020.00277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nobili L, Lionetti M, Neri A (2016) Long non-coding RNAs in normal and malignant hematopoiesis. Oncotarget 7(31):50666–50681. https://doi.org/10.18632/oncotarget.9308

    Article  PubMed  PubMed Central  Google Scholar 

  5. Nie JH, Li TX, Zhang XQ, Liu J (2019) Roles of non-coding RNAs in Normal human brain development, brain tumor, and neuropsychiatric disorders. Noncoding RNA 5(2):36. https://doi.org/10.3390/ncrna5020036

    Article  CAS  PubMed Central  Google Scholar 

  6. Alessio E, Buson L, Chemello F, Peggion C, Grespi F, Martini P, Massimino ML, Pacchioni B, Millino C, Romualdi C, Bertoli A, Scorrano L, Lanfranchi G, Cagnin S (2019) Single cell analysis reveals the involvement of the long non-coding RNA Pvt1 in the modulation of muscle atrophy and mitochondrial network. Nucleic Acids Res 47(4):1653–1670. https://doi.org/10.1093/nar/gkz007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fang Y, Fullwood MJ (2016) Roles, functions, and mechanisms of long non-coding RNAs in cancer. Genomics Proteomics Bioinformatics 14(1):42–54. https://doi.org/10.1016/j.gpb.2015.09.006

    Article  PubMed  PubMed Central  Google Scholar 

  8. Jiang MC, Ni JJ, Cui WY, Wang BY, Zhuo W (2019) Emerging roles of lncRNA in cancer and therapeutic opportunities. Am J Cancer Res 9(7):1354–1366

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Martini P, Paracchini L, Caratti G, Mello-Grand M, Fruscio R, Beltrame L, Calura E, Sales G, Ravaggi A, Bignotti E, Odicino FE, Sartori E, Perego P, Katsaros D, Craparotta I, Chiorino G, Cagnin S, Mannarino L, Ceppi L, Mangioni C, Ghimenti C, D’Incalci M, Marchini S, Romualdi C (2017) lncRNAs as novel indicators of Patients’ prognosis in stage I epithelial ovarian cancer: a retrospective and multicentric study. Clin Cancer Res 23(9):2356–2366. https://doi.org/10.1158/1078-0432.CCR-16-1402

    Article  CAS  PubMed  Google Scholar 

  10. Arndt CA, Crist WM (1999) Common musculoskeletal tumors of childhood and adolescence. N Engl J Med 341(5):342–352. https://doi.org/10.1056/NEJM199907293410507

    Article  CAS  PubMed  Google Scholar 

  11. Qualman SJ, Coffin CM, Newton WA, Hojo H, Triche TJ, Parham DM, Crist WM (1998) Intergroup rhabdomyosarcoma study: update for pathologists. Pediatr Dev Pathol 1(6):550–561. https://doi.org/10.1007/s100249900076

    Article  CAS  PubMed  Google Scholar 

  12. Davis RJ, D’Cruz CM, Lovell MA, Biegel JA, Barr FG (1994) Fusion of PAX7 to FKHR by the variant t(1;13)(p36;q14) translocation in alveolar rhabdomyosarcoma. Cancer Res 54(11):2869–2872

    CAS  PubMed  Google Scholar 

  13. Barr FG, Galili N, Holick J, Biegel JA, Rovera G, Emanuel BS (1993) Rearrangement of the PAX3 paired box gene in the paediatric solid tumour alveolar rhabdomyosarcoma. Nat Genet 3(2):113–117. https://doi.org/10.1038/ng0293-113

    Article  CAS  PubMed  Google Scholar 

  14. Buckingham M, Relaix F (2007) The role of Pax genes in the development of tissues and organs: Pax3 and Pax7 regulate muscle progenitor cell functions. Annu Rev Cell Dev Biol 23:645–673. https://doi.org/10.1146/annurev.cellbio.23.090506.123438

    Article  CAS  PubMed  Google Scholar 

  15. Schiaffino S, Reggiani C (2011) Fiber types in mammalian skeletal muscles. Physiol Rev 91(4):1447–1531. https://doi.org/10.1152/physrev.00031.2010

    Article  CAS  PubMed  Google Scholar 

  16. Blackburn DM, Lazure F, Corchado AH, Perkins TJ, Najafabadi HS, Soleimani VD (2019) High-resolution genome-wide expression analysis of single myofibers using SMART-Seq. J Biol Chem 294(52):20097–20108. https://doi.org/10.1074/jbc.RA119.011506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chemello F, Grespi F, Zulian A, Cancellara P, Hebert-Chatelain E, Martini P, Bean C, Alessio E, Buson L, Bazzega M, Armani A, Sandri M, Ferrazza R, Laveder P, Guella G, Reggiani C, Romualdi C, Bernardi P, Scorrano L, Cagnin S, Lanfranchi G (2019) Transcriptomic analysis of single isolated Myofibers identifies miR-27a-3p and miR-142-3p as regulators of metabolism in skeletal muscle. Cell Rep 26(13):3784–3797. e3788. https://doi.org/10.1016/j.celrep.2019.02.105

    Article  CAS  PubMed  Google Scholar 

  18. Chemello F, Alessio E, Buson L, Pacchioni B, Millino C, Lanfranchi G, Cagnin S (2019) Isolation and transcriptomic profiling of single Myofibers from mice. Bio-Protocol 9(19):e3378. https://doi.org/10.21769/BioProtoc.3378

    Article  PubMed  PubMed Central  Google Scholar 

  19. Biscontin A, Casara S, Cagnin S, Tombolan L, Rosolen A, Lanfranchi G, De Pitta C (2010) New miRNA labeling method for bead-based quantification. BMC Mol Biol 11:44. https://doi.org/10.1186/1471-2199-11-44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Alessio E, Bonadio RS, Buson L, Chemello F, Cagnin S (2020) A single cell but many different transcripts: a journey into the world of long non-coding RNAs. Int J Mol Sci 21(1):302. https://doi.org/10.3390/ijms21010302

    Article  CAS  PubMed Central  Google Scholar 

  21. Hwang B, Lee JH, Bang D (2018) Single-cell RNA sequencing technologies and bioinformatics pipelines. Exp Mol Med 50(8):96. https://doi.org/10.1038/s12276-018-0071-8

    Article  CAS  PubMed Central  Google Scholar 

  22. Bakken TE, Hodge RD, Miller JA, Yao Z, Nguyen TN, Aevermann B, Barkan E, Bertagnolli D, Casper T, Dee N, Garren E, Goldy J, Graybuck LT, Kroll M, Lasken RS, Lathia K, Parry S, Rimorin C, Scheuermann RH, Schork NJ, Shehata SI, Tieu M, Phillips JW, Bernard A, Smith KA, Zeng H, Lein ES, Tasic B (2018) Single-nucleus and single-cell transcriptomes compared in matched cortical cell types. PLoS One 13(12):e0209648. https://doi.org/10.1371/journal.pone.0209648

    Article  PubMed  PubMed Central  Google Scholar 

  23. Selewa A, Dohn R, Eckart H, Lozano S, Xie B, Gauchat E, Elorbany R, Rhodes K, Burnett J, Gilad Y, Pott S, Basu A (2020) Systematic comparison of high-throughput single-cell and single-nucleus transcriptomes during cardiomyocyte differentiation. Sci Rep 10(1):1535. https://doi.org/10.1038/s41598-020-58327-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM 3rd, Hao Y, Stoeckius M, Smibert P, Satija R (2019) Comprehensive integration of single-cell data. Cell 177(7):1888–1902. e1821. https://doi.org/10.1016/j.cell.2019.05.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wolock SL, Lopez R, Klein AM (2019) Scrublet: computational identification of cell doublets in single-cell transcriptomic data. Cell Syst 8(4):281–291. e289. https://doi.org/10.1016/j.cels.2018.11.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12(4):357–360. https://doi.org/10.1038/nmeth.3317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1):15–21. https://doi.org/10.1093/bioinformatics/bts635

    Article  CAS  PubMed  Google Scholar 

  28. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and cufflinks. Nat Protoc 7(3):562–578. https://doi.org/10.1038/nprot.2012.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Guttman M, Garber M, Levin JZ, Donaghey J, Robinson J, Adiconis X, Fan L, Koziol MJ, Gnirke A, Nusbaum C, Rinn JL, Lander ES, Regev A (2010) Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nat Biotechnol 28(5):503–510. https://doi.org/10.1038/nbt.1633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL (2015) StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol 33(3):290–295. https://doi.org/10.1038/nbt.3122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shao M, Kingsford C (2017) Accurate assembly of transcripts through phase-preserving graph decomposition. Nat Biotechnol 35(12):1167–1169. https://doi.org/10.1038/nbt.4020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A, Rinn JL (2011) Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 25(18):1915–1927. https://doi.org/10.1101/gad.17446611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fu L, Niu B, Zhu Z, Wu S, Li W (2012) CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28(23):3150–3152. https://doi.org/10.1093/bioinformatics/bts565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, MacManes MD, Ott M, Orvis J, Pochet N, Strozzi F, Weeks N, Westerman R, William T, Dewey CN, Henschel R, LeDuc RD, Friedman N, Regev A (2013) De novo transcript sequence reconstruction from RNA-seq using the trinity platform for reference generation and analysis. Nat Protoc 8(8):1494–1512. https://doi.org/10.1038/nprot.2013.084

    Article  CAS  PubMed  Google Scholar 

  35. Kong L, Zhang Y, Ye ZQ, Liu XQ, Zhao SQ, Wei L, Gao G (2007) CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res 35(Web Server issue):W345–W349. https://doi.org/10.1093/nar/gkm391

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35(9):3100–3108. https://doi.org/10.1093/nar/gkm160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. The RNAcentral Consortium (2019) RNAcentral: a hub of information for non-coding RNA sequences. Nucleic Acids Res 47(D1):D221–D229. https://doi.org/10.1093/nar/gky1034

    Article  CAS  Google Scholar 

  38. Anders S, Pyl PT, Huber W (2015) HTSeq--a python framework to work with high-throughput sequencing data. Bioinformatics 31(2):166–169. https://doi.org/10.1093/bioinformatics/btu638

    Article  CAS  PubMed  Google Scholar 

  39. Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323. https://doi.org/10.1186/1471-2105-12-323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Srivastava A, Malik L, Smith T, Sudbery I, Patro R (2019) Alevin efficiently estimates accurate gene abundances from dscRNA-seq data. Genome Biol 20(1):65. https://doi.org/10.1186/s13059-019-1670-y

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Cagnin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cagnin, S., Alessio, E., Bonadio, R.S., Sales, G. (2021). Single-Cell RNAseq Analysis of lncRNAs. In: Navarro, A. (eds) Long Non-Coding RNAs in Cancer. Methods in Molecular Biology, vol 2348. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1581-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1581-2_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1580-5

  • Online ISBN: 978-1-0716-1581-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics