Skip to main content

Highly Synchronous Mitotic Progression in Schizosaccharomyces pombe Upon Relief of Transient Cdc2-asM17 Inhibition

  • Protocol
  • First Online:
Cell Cycle Oscillators

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2329))

Abstract

Synchronized progression of a cell population through the cell division cycle supports the biochemical and functional dissection of cell cycle controls and execution. The concerted behaviour of the population reflects the attributes of each cell within that population. The reversible imposition of a block to cell cycle progression at the G2–M boundary through transient inactivation of the Cdk1-Cyclin B activating phosphatase, Cdc25, with the temperature sensitive cdc25-22 mutant, has been widely used to study fission yeast mitosis and DNA replication. However, the biology of the compromised Cdc25-22 phosphatase generates significant division abnormalities upon release from mitotic arrest. We show how reversible inhibition of Cdc2-asM17, with the ATP analog 3-BrB-PP1, generates higher levels of synchrony with timing and morphology much more reminiscent of a normal division. We also describe a version of the H1 kinase assay of Cdk1-Cyclin B activity that is widely used to monitor mitotic progression which does not require radiolabeled ATP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mitchison JM, Nurse P (1985) Growth in cell length in the fission yeast Schizosaccharomyces pombe. J Cell Sci 75:357–376

    Article  CAS  Google Scholar 

  2. Hayles J, Nurse P (2018) Introduction to fission yeast as a model system. Cold Spring Harb Protoc. https://doi.org/10.1101/pdb.top079749

  3. Mitchison JM (1970) Physiological and cytological methods for Schizosaccharomyces pombe. Meth Cell Physiol 4:131–165

    Google Scholar 

  4. Hagan IM, Grallert A, Simanis V (2016) Cell cycle synchronization of Schizosaccharomyces pombe by lactose gradient centrifugation to isolate small cells. Cold Spring Harb Protoc. https://doi.org/10.1101/pdb.prot091249

  5. Hagan IM, Grallert A, Simanis V (2016) Cell cycle synchronization of Schizosaccharomyces pombe by centrifugal elutriation of small cells. doi: https://doi.org/10.1101/pdb.prot091231

  6. Hagan IM, Grallert A, Simanis V (2016) Analysis of the Schizosaccharomyces pombe cell cycle. doi: https://doi.org/10.1101/pdb.top082800

  7. Petersen J, Hagan IM (2003) S. pombe aurora kinase/survivin is required for chromosome condensation and the spindle checkpoint attachment response. Curr Biol 13:590–597

    Article  CAS  Google Scholar 

  8. Nielsen O (2016) Synchronization of S phase in Schizosaccharomyces pombe cells by transient exposure to M-factor pheromone. Cold Spring Harb Protoc. https://doi.org/10.1101/pdb.prot091272

  9. Nurse P (1990) Universal control mechanism regulating onset of M-phase. Nature 344:503–508

    Article  CAS  Google Scholar 

  10. Ferrell JE (2008) Feedback regulation of opposing enzymes generates robust, all-or-none bistable responses. Curr Biol 18:R244–R245

    Article  CAS  Google Scholar 

  11. Hagan IM, Grallert A (2013) Spatial control of mitotic commitment in fission yeast. Biochem Soc Trans 41:1766–1771

    Article  CAS  Google Scholar 

  12. Nurse P, Thuriaux P, Nasmyth K (1976) Genetic control of the cell division cycle in the fission yeast Schizosaccharomyces pombe. Mol Gen Genet 146:167–178

    Article  CAS  Google Scholar 

  13. Fantes PA (1977) Control of cell size and cycle time in Schizosaccharomyces pombe. J Cell Sci 24:51–67

    Article  CAS  Google Scholar 

  14. King SM, Hyams JS (1982) Synchronisation of mitosis in a cell division cycle mutant of Schizosaccharomyces pombe released from temperature arrest. Can J Microbiol 28:261–264

    Article  Google Scholar 

  15. Nurse P, Bissett Y (1981) Gene required in G1 for commitment to cell cycle and in G2 for control of mitosis in fission yeast. Nature 292:558–560

    Article  CAS  Google Scholar 

  16. Hagan IM (1988) A study of the behaviour of microtubules and the mitotic spindle in the fission yeast Schizosaccharomyces pombe. PhD thesis, University of London, London

    Google Scholar 

  17. Hagan IM, Riddle PN, Hyams JS (1990) Intramitotic controls in the fission yeast Schizosaccharomyces pombe: the effect of cell size on spindle length and the timing of mitotic events. J Cell Biol 110:1617–1621

    Article  CAS  Google Scholar 

  18. Booher RN, Alfa CE, Hyams JS et al (1989) The fission yeast cdc2/cdc13/suc1 protein kinase: regulation of catalytic activity and nuclear localization. Cell 58:485–497

    Article  CAS  Google Scholar 

  19. Hagan IM, Grallert A, Simanis V (2016) Synchronizing progression of Schizosaccharomyces pombe cells from G2 through repeated rounds of mitosis and S phase with cdc25–22 arrest release. doi: https://doi.org/10.1101/pdb.prot091264-6

  20. Chen D, Toone WM, Mata J et al (2003) Global transcriptional responses of fission yeast to environmental stress. Mol Biol Cell 14:214–229

    Article  CAS  Google Scholar 

  21. Nigg EA (1993) Cellular substrates of p34cdc2 and its companion cyclin-dependent kinases. Trends Cell Biol 3:296–301

    Article  CAS  Google Scholar 

  22. Petersen J, Hagan IM (2005) Polo kinase links the stress pathway to cell cycle control and tip growth in fission yeast. Nature 435:507–512

    Article  CAS  Google Scholar 

  23. Bishop AC, Ubersax JA, Petsch DT et al (2000) A chemical switch for inhibitor-sensitive alleles of any protein kinase. Nature 407:395–401

    Article  CAS  Google Scholar 

  24. Tay YD, Patel A, Kaemena DF et al (2013) Mutation of a conserved residue enhances the sensitivity of analogue-sensitised kinases to generate a novel approach to the study of mitosis in fission yeast. J Cell Sci 126:5052–5061

    CAS  PubMed  Google Scholar 

  25. Swaffer MP, Jones AW, Flynn HR et al (2016) CDK substrate phosphorylation and ordering the cell cycle. Cell 167:1750–1761

    Article  CAS  Google Scholar 

  26. Aoi Y, Kawashima SA, Simanis V et al (2014) Optimization of the analogue-sensitive Cdc2/Cdk1 mutant by in vivo selection eliminates physiological limitations to its use in cell cycle analysis. Open Biol 4:140063–140063

    Article  Google Scholar 

  27. Dischinger S, Krapp A, Xie L et al (2008) Chemical genetic analysis of the regulatory role of Cdc2p in the S. pombe septation initiation network. J Cell Sci 121:843–853

    Article  CAS  Google Scholar 

  28. Stern B, Nurse P (1996) A quantitative model for the cdc2 control of S phase and mitosis in fission yeast. Trends Genet 12:345–350

    Article  CAS  Google Scholar 

  29. Coudreuse D, Nurse P (2010) Driving the cell cycle with a minimal CDK control network. Nature 468:1074–1079

    Article  CAS  Google Scholar 

  30. Nilsson J (2018) Protein phosphatases in the regulation of mitosis. J Cell Biol 218:395–409

    Article  Google Scholar 

  31. Bouhlel IB, Ohta M, Mayeux A et al (2015) Cell cycle control of spindle pole body duplication and splitting by Sfi1 and Cdc31 in fission yeast. J Cell Sci 128:1481–1493

    CAS  PubMed  Google Scholar 

  32. Novak B, Mitchison JM (1986) Change in the rate of CO2 production in synchronous cultures of the fission yeast Schizosaccharomyces pombe: a periodic cell cycle event that persists after the DNA-division cycle has been blocked. J Cell Sci 86:191–206

    Article  CAS  Google Scholar 

  33. Novak B, Mitchison JM (1990) Changes in the rate of oxygen consumption in synchronous cultures of the fission yeast Schizosaccharomyces pombe. J Cell Sci 96:429–433

    Article  CAS  Google Scholar 

  34. Simanis V (2015) Pombe's thirteen – control of fission yeast cell division by the septation initiation network. J Cell Sci 128:1465–1474

    CAS  PubMed  Google Scholar 

  35. Neumann FR, Nurse P (2007) Nuclear size control in fission yeast. J Cell Biol 179:593–600

    Article  CAS  Google Scholar 

  36. Birot A, Eguienta K, Vazquez S et al (2017) A second Wpl1 anti-cohesion pathway requires dephosphorylation of fission yeast kleisin Rad21 by PP4. EMBO J 36:1364–1378

    Article  CAS  Google Scholar 

  37. Petersen J, Russell P (2016) Growth and the environment of Schizosaccharomyces pombe. Cold Spring Harb Protoc. https://doi.org/10.1101/pdb.top079764

  38. Tanaka K, Petersen J, MacIver F et al (2001) The role of Plo1 kinase in mitotic commitment and septation in Schizosaccharomyces pombe. EMBO J 20:1259–1270

    Article  CAS  Google Scholar 

  39. Caspari T, Murray JM, Carr AM (2002) Cdc2-cyclin B kinase activity links Crb2 and Rqh1-topoisomerase III. Genes Dev 16:1195–1208

    Article  CAS  Google Scholar 

  40. Grallert A, Patel A, Tallada VA et al (2013) Centrosomal MPF triggers the mitotic and morphogenetic switches of fission yeast. Nat Cell Biol 15:88–95

    Article  CAS  Google Scholar 

  41. Hagan IM (2016) Immunofluorescence microscopy of Schizosaccharomyces pombe using chemical fixation. https://doi.org/10.1101/pdb.prot091017

  42. Woods A, Sherwin T, Sasse R et al (1989) Definition of individual components within the cytoskeleton of Trypanosoma brucei by a library of monoclonal antibodies. J Cell Sci 93:491–500

    Article  Google Scholar 

  43. Hagan IM, Hyams (1988) The use of cell division cycle mutants to investigate the control of microtubule distribution in the fission yeast Schizosaccharomyces pombe. J Cell Sci 89:343–357

    Article  Google Scholar 

  44. Heitz MJ, Petersen J, Valovin S et al (1989) MTOC formation during mitotic exit in fission yeast. J Cell Sci 114:4521–4532

    Article  Google Scholar 

  45. Funabiki H, Hagan IM, Uzawa S et al (1993) Cell cycle-dependent specific positioning and clustering of centromeres and telomeres in fission yeast. J Cell Biol 121:961–976

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Daniel Mulvihill (University of Kent, UK) and Janni Petersen (Flinders University, Australia) for critical reading of the manuscript and CRUK (A27336 and A24458) and Wellcome (200847/Z/16/Z) for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iain Michael Hagan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Singh, P., Halova, L., Hagan, I.M. (2021). Highly Synchronous Mitotic Progression in Schizosaccharomyces pombe Upon Relief of Transient Cdc2-asM17 Inhibition. In: Coutts, A.S., Weston, L. (eds) Cell Cycle Oscillators . Methods in Molecular Biology, vol 2329. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1538-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1538-6_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1537-9

  • Online ISBN: 978-1-0716-1538-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics