Skip to main content

Comprehensive Phytotoxicity Assessment Protocol for Engineered Nanomaterials

  • Protocol
  • First Online:
Environmental Toxicology and Toxicogenomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2326))

  • 1078 Accesses

Abstract

In order for nanotechnology to be sustainably applied in agriculture, emphasis should be on comprehensive assessment of multiple endpoints, including biouptake and localization of engineered nanomaterials (ENMs), potential effects on food nutrient quality, oxidative stress responses, and crop yield, before ENMs are routinely applied in consumer and agronomic products. This chapter succinctly outlines a protocol for conducting nanophytotoxicity studies focusing on nanoparticle purification and characterization, arbuscular mycorrhizal fungi (AMF)/symbiont inoculation, biouptake and translocation/localization, varied endpoints of oxidative stress responses, and crop yield.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. White JC, Gardea-Torresdey JL (2018) Achieving food security through the very small. Nat Nanotechnol 13:627–629. https://doi.org/10.1038/s41565-018-0223-y

    Article  CAS  PubMed  Google Scholar 

  2. National Nanotechnology Initiative (NNI) (2006). Environmental, health and safety research needs for engineered nanoscale materials. September nanoscale science, engineering, and technology subcommittee, Committee on technology, National Science and Technology Council. http://www.nano.gov/sites/default/files/pub_resource/nni_ehs_research_needs.pdf?q=NNI_EHS_research_needs.pdf

  3. Milani N, McLaughlin MJ, Stacey SP, Kirby JK, Hettiarachchi GM, Beak DG, Cornelis G (2012) Dissolution kinetics of macronutrient fertilizers coated with manufactured zinc oxide nanoparticles. J Agric Food Chem 60:3991–3998

    Article  CAS  Google Scholar 

  4. Wiesner MR, Lowry GV, Alvarez P, Dionysiou D, Biswas P (2006) Assessing the risks of manufactured nanomaterials. Environ Sci Technol 40:4336–4345

    Article  CAS  Google Scholar 

  5. Pokhrel LR, Dubey B (2013) Evaluation of developmental responses of two crop plants exposed to silver and zinc oxide nanoparticles. Sci Total Environ 452–453:321–332

    Article  Google Scholar 

  6. Andersen CP, King G, Plocher M, Storm M, Pokhrel LR, Johnson MG, Rygiewicz PT (2016) Germination and early plant development of 10 plant species exposed to TiO2 and CeO2 nanoparticles. Environ Toxicol Chem 35(9):2223–2229

    Article  CAS  Google Scholar 

  7. Pokhrel LR, Dubey B, Scheuerman PR (2013) Impacts of select organic ligands on the colloidal stability, dissolution dynamics, and toxicity of silver nanoparticles. Environ Sci Technol 47:12877–12885

    Article  CAS  Google Scholar 

  8. Pokhrel LR, Andersen CP, Rygiewicz PT, Johnson MG (2014) Preferential interaction of Na+ over K+ with carboxylate-functionalized silver nanoparticles. Sci Total Environ 490:11–18

    Article  CAS  Google Scholar 

  9. Pokhrel LR, Dubey B, Scheuerman PR (2014) Natural water chemistry (dissolved organic carbon, pH, and hardness) modulates colloidal stability, dissolution, and antimicrobial activity of silver nanoparticles. Environ Sci Nano 1:45–54

    Article  CAS  Google Scholar 

  10. Maynard AD, Aitken RJ, Butz T, Colvin V, Donaldson K, Oberdorster G (2006) Safe handling of nanotechnology. Nature 444:267–269

    Article  CAS  Google Scholar 

  11. Ahmed B, Zaidi A, Khan MS, Rizvi A, Saif S, Shahid M (2017) Perspectives of plant growth promoting rhizobacteria in growth enhancement and sustainable production of tomato. Microb Strat Veg Prod:125–149. https://doi.org/10.1007/978-3-319-54401-4_6

  12. Smith SE, Read DJ (2008) Mycorrhizal Symbiosis. Academic Press, London

    Google Scholar 

  13. Miller RM, Jastrow JD (2000) Mycorrhizal fungi influence soil structure. In: Kapulnik Y, Douds DD (eds) Arbuscular mycorrhizas: molecular biology and physiology. Kluwer Academic, Dordrecht, pp 3–18

    Chapter  Google Scholar 

  14. Miransari M (2011a) Arbuscular mycorrhizal fungi and nitrogen uptake. Arch Microbiol 193:77–81

    Article  CAS  Google Scholar 

  15. Miransari M (2011b) Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnol Adv 29:645–653

    Article  CAS  Google Scholar 

  16. Gaur A, Adholeya A (2004) Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Curr Sci 86:528–534

    CAS  Google Scholar 

  17. Wright SF, Upadhyaya A (1996) Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Soil Sci 161:575–586

    Article  CAS  Google Scholar 

  18. Gonzalez-Chavez MC, Carrillo-Gonzalez R, Wright SF, Nichols KA (2004) The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environ Pollut 130:317–323

    Article  CAS  Google Scholar 

  19. Xu ZY, Tang M, Chen H, Ban YH, Zhang HH (2012) Microbial community structure in the rhizosphere of Sophora viciifolia grown at a lead and zinc mine of northwest China. Sci Total Environ 435–436:453–464

    Article  Google Scholar 

  20. Chen BD, Shen H, Li XL, Feng G, Christie P (2004) Effects of EDTA application and arbuscular mycorrhizal colonization on growth and zinc uptake by maize (Zea mays L.) in soil experimentally contaminated with zinc. Plant Soil 261:219–229

    Article  CAS  Google Scholar 

  21. Ghasemi Siani N, Fallah S, Pokhrel LR, Rostamnejadi A (2017) Natural amelioration of zinc oxide nanoparticles toxicity in fenugreek (Trigonella foenum-gracum) by arbuscular mycorrhizal (Glomus intraradices) secretion of glomalin. Plant Physiol Biochem 112:227–238. https://doi.org/10.1016/j.plaphy.2017.01.001

    Article  CAS  PubMed  Google Scholar 

  22. Yusefi-Tanha E, Fallah S, Rostamnejadi A, Pokhrel LR (2020) Particle size and concentration dependent toxicity of copper oxide nanoparticles (CuONPs) on seed yield and antioxidant defense system in soil grown soybean (Glycine max cv. Kowsar). Sci. Total Environ 715:136994. https://doi.org/10.1016/j.scitotenv.2020.136994

    Article  CAS  PubMed  Google Scholar 

  23. Yusefi-Tanha E, Fallah S, Rostamnejadi A, Pokhrel LR (2020) Root system architecture, copper uptake and tissue distribution in soybean (Glycine max (L.) Merr.) grown in copper oxide nanoparticle (CuONP) amended soil and implications for human nutrition. Plan Theory 9(10):1326. https://doi.org/10.3390/plants9101326

    Article  CAS  Google Scholar 

  24. Y Yusefi-Tanha E, Fallah S, Rostamnejadi A, Pokhrel LR (2020) Zinc oxide nanoparticles (ZnONPs) as a novel Nanofertilizer: influence on seed yield and antioxidant defense system in soil grown soybean (Glycine max cv. Kowsar). Sci Total Environ 738:140240. https://doi.org/10.1016/j.scitotenv.2020.140240

    Article  CAS  Google Scholar 

  25. Zandi S, Kameli P, Salamati H, Ahmadvand H, Hakimi M (2011) Microstructure and optical properties of ZnO nanoparticles prepared by a simple method. Phys B 406:3215–3218

    Article  CAS  Google Scholar 

  26. Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplast: i. kinetics and stoichionetry of fatty acid peroxidation. Arch Biochem Biophys 125(1):189–198. https://doi.org/10.1016/0003-9861(68)90654-1

    Article  CAS  PubMed  Google Scholar 

  27. Narwal SS, Bogatek R, Zagdanska BM, Sampietro DA, Vattuone MA (2009) Plant biochemistry. Studium Press LLC, Texas

    Google Scholar 

  28. Nag S, Saha K, Choudhuri MA (2000) A rapid and sensitive assay method for measuring amine oxidase based on hydrogen peroxide–titanium complex formation. Plant Sci 157(2):157–163. https://doi.org/10.1016/S0168-9452(00)00281-8

    Article  CAS  PubMed  Google Scholar 

  29. MacAdam JW, Nelson CJ, Sharp RE (1992) Peroxidase activity in the leaf elongation zone of tall fescue. Plant Physiol 99:872–878. https://doi.org/10.1104/pp.99.3.872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Benkeblia N (2005) Free-radical scavenging capacity and antioxidant properties of some selected onions (Allium cepa L.) and garlic (Allium sativum L.) extracts. Braz Arch Biol Technol 48(5):753–759. https://doi.org/10.1590/S1516-89132005000600011

    Article  CAS  Google Scholar 

  31. De Baets S, Poesen J, Knapen A, Barbera GG, Navarro JA (2007) Root characteristics of representative Mediterranean plant species and their erosion-reducing potential during concentrated runoff. Plant Soil 294:169–183. https://doi.org/10.1007/s11104-007-9244-2

    Article  CAS  Google Scholar 

  32. Dorney KM, Baker JD, Edwards ML, Kanel SR, O’Malley M, Pavel Sizemore IE (2014) Tangential flow filtration of colloidal silver nanoparticles: a “green” laboratory experiment for chemistry and engineering students. J Chem Educ 91(7):1044–1049

    Article  CAS  Google Scholar 

  33. Pokhrel LR, Silva T, Dubey B, El Badawy AM, Tolaymat TM, Scheuerman PR (2012) Rapid screening of aquatic toxicity of several metal-based nanoparticles using the MetPLATE™ bioassay. Sci Total Environ 426:414–422

    Article  CAS  Google Scholar 

  34. Pokhrel LR, Andersen CP. SOP for Purification of Engineered Nanoparticles Using the Tangential Flow Filtration (TFF) System. National Health and Environmental Effects Research Laboratory, Western Ecology Division, USEPA, OR. January 2015, Pages 1-12. DCN: EEB/CA/2015-01-r0

    Google Scholar 

Download references

Acknowledgements

LRP gratefully acknowledges funding support from East Carolina University (grant #111101 to LRP). CSU thanks ECU Graduate School and Department of Public Health for the graduate assistantship. SF would also like to thank Shahrekord University for the financial support (grant #96-GRN1M731 to SF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lok R. Pokhrel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pokhrel, L.R., Ubah, C.S., Fallah, S. (2021). Comprehensive Phytotoxicity Assessment Protocol for Engineered Nanomaterials. In: Pan, X., Zhang, B. (eds) Environmental Toxicology and Toxicogenomics. Methods in Molecular Biology, vol 2326. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1514-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1514-0_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1513-3

  • Online ISBN: 978-1-0716-1514-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics