Skip to main content

Imaging Glycosaminoglycan Modification Patterns In Vivo

  • Protocol
  • First Online:
Glycosaminoglycans

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2303))

Abstract

Glycosaminoglycans (GAGs) such as heparan sulfates (HS) or chondroitin sulfates (CS) are long unbranched polymers of a disaccharide comprised of hexuronic acid and hexosamine. Attached to a protein backbone via a characteristic tetrasaccharide, the GAG chains are non-uniformly modified by sulfations, epimerizations, and deacetylations. The resultant glycan chains contain highly modified domains, separated by sections of sparse or no modifications. These GAG domains are central to the role of glycans in binding to proteins and mediating protein–protein interactions. Since HS and CS domains are not genetically encoded, they cannot be visualized and studied with conventional methods in vivo. We describe a transgenic approach using single chain variable fragment (scFv) antibodies that bind HS or CS. By transgenically expressing fluorescently tagged scFv antibodies, we can directly visualize both HS and CS domains in live Caenorhabditis elegans revealing unprecedented cellular specificity and evolutionary conservation (Attreed et al., Nat Methods 9(5): 477–479, 2012; Attreed et al., Glycobiology 26(8): 862–870, 2016) (unpublished). The approach allows concomitant co-labeling of multiple GAG domains, the study of GAG dynamics, and could lend itself to a genetic analysis of GAG domain biosynthesis or function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lindahl U, Couchman J, Kimata K, Esko JD (2017) Proteoglycans and sulfated glycosaminoglycans. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, Darvill AG, Kinoshita T, Packer NH, Prestegard JH, Schnaar RL, Seeberger PH (eds) Essentials of glycobiology. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 207–221

    Google Scholar 

  2. Bishop JR, Schuksz M, Esko JD (2007) Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature 446(7139):1030–1037

    Article  CAS  PubMed  Google Scholar 

  3. Bülow HE, Hobert O (2006) The molecular diversity of glycosaminoglycans shapes animal development. Annu Rev Cell Dev Biol 22:375–407

    Article  PubMed  CAS  Google Scholar 

  4. Nadanaka S, Kitagawa H (2008) Heparan sulphate biosynthesis and disease. J Biochem 144(1):7–14

    Article  CAS  PubMed  Google Scholar 

  5. Sarrazin S, Lamanna WC, Esko JD (2011) Heparan sulfate proteoglycans. Cold Spring Harb Perspect Biol 3(7):a004952

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Saied-Santiago K, Bülow HE (2018) Diverse roles for glycosaminoglycans in neural patterning. Dev Dyn 247(1):54–74

    Article  CAS  PubMed  Google Scholar 

  7. Silver DJ, Silver J (2014) Contributions of chondroitin sulfate proteoglycans to neurodevelopment, injury, and cancer. Curr Opin Neurobiol 27:171–178

    Article  CAS  PubMed  Google Scholar 

  8. Xu D, Esko JD (2014) Demystifying heparan sulfate-protein interactions. Annu Rev Biochem 83:129–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lindahl U, Li JP (2009) Interactions between heparan sulfate and proteins-design and functional implications. Int Rev Cell Mol Biol 276:105–159

    Article  PubMed  CAS  Google Scholar 

  10. Hoogenboom HR, Winter G (1992) By-passing immunisation. Human antibodies from synthetic repertoires of germline VH gene segments rearranged in vitro. J Mol Biol 227(2):381–388

    Article  CAS  PubMed  Google Scholar 

  11. Marks JD, Hoogenboom HR, Bonnert TP, McCafferty J, Griffiths AD, Winter G (1991) By-passing immunization. Human antibodies from V-gene libraries displayed on phage. J Mol Biol 222(3):581–597

    Article  CAS  PubMed  Google Scholar 

  12. Dennissen MA, Jenniskens GJ, Pieffers M, Versteeg EM, Petitou M, Veerkamp JH, van Kuppevelt TH (2002) Large, tissue-regulated domain diversity of heparan sulfates demonstrated by phage display antibodies. J Biol Chem 277(13):10982–10986

    Article  CAS  PubMed  Google Scholar 

  13. Kurup S, Wijnhoven TJ, Jenniskens GJ, Kimata K, Habuchi H, Li JP, Lindahl U, van Kuppevelt TH, Spillmann D (2007) Characterization of anti-heparan sulfate phage display antibodies AO4B08 and HS4E4. J Biol Chem 282(29):21032–21042

    Article  CAS  PubMed  Google Scholar 

  14. Izumikawa T, Dejima K, Watamoto Y, Nomura KH, Kanaki N, Rikitake M, Tou M, Murata D, Yanagita E, Kano A, Mitani S, Nomura K, Kitagawa H (2016) Chondroitin 4-O-Sulfotransferase is indispensable for sulfation of chondroitin and plays an important role in maintaining normal life span and oxidative stress responses in nematodes. J Biol Chem 291(44):23294–23304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dierker T, Shao C, Haitina T, Zaia J, Hinas A, Kjellén L (2016) Nematodes join the family of chondroitin sulfate-synthesizing organisms: identification of an active chondroitin sulfotransferase in Caenorhabditis elegans. Sci Rep 6:34662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Noborn F, Gomez Toledo A, Nasir W, Nilsson J, Dierker T, Kjellen L, Larson G (2018) Expanding the chondroitin glycoproteome of Caenorhabditis elegans. J Biol Chem 293(1):379–389

    Article  CAS  PubMed  Google Scholar 

  17. Sugahara K, Mikami T, Uyama T, Mizuguchi S, Nomura K, Kitagawa H (2003) Recent advances in the structural biology of chondroitin sulfate and dermatan sulfate. Curr Opin Struct Biol 13(5):612–620

    Article  CAS  PubMed  Google Scholar 

  18. Attreed M, Desbois M, van Kuppevelt TH, Bülow HE (2012) Direct visualization of specifically modified extracellular glycans in living animals. Nat Methods 9(5):477–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Grant B, Greenwald I (1996) The Caenorhabditis elegans sel-1 gene, a negative regulator of lin-12 and glp-1, encodes a predicted extracellular protein. Genetics 143(1):237–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fares H, Greenwald I (1999) SEL-5, a serine/threonine kinase that facilitates lin-12 activity in Caenorhabditis elegans. Genetics 153(4):1641–1654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Evans TC (2006) Transformation and microinjection (April 6, 2006), WormBook, ed. The C. elegans research community, WormBook. https://doi.org/10.1895/wormbook.1.108.1., http://www.wormbook.org

  22. Nissim A, Hoogenboom HR, Tomlinson IM, Flynn G, Midgley C, Lane D, Winter G (1994) Antibody fragments from a 'single pot' phage display library as immunochemical reagents. EMBO J 13(3):692–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tomlinson IM, Walter G, Marks JD, Llewelyn MB, Winter G (1992) The repertoire of human germline VH sequences reveals about fifty groups of VH segments with different hypervariable loops. J Mol Biol 227(3):776–798

    Article  CAS  PubMed  Google Scholar 

  24. Huston JS, Levinson D, Mudgett-Hunter M, Tai MS, Novotny J, Margolies MN, Ridge RJ, Bruccoleri RE, Haber E, Crea R et al (1988) Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proc Natl Acad Sci U S A 85(16):5879–5883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Attreed M, Saied-Santiago K, Bülow HE (2016) Conservation of anatomically restricted glycosaminoglycan structures in divergent nematode species. Glycobiology 26(8):862–870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pedelacq JD, Cabantous S, Tran T, Terwilliger TC, Waldo GS (2006) Engineering and characterization of a superfolder green fluorescent protein. Nat Biotechnol 24(1):79–88

    Article  CAS  PubMed  Google Scholar 

  27. He S, Cuentas-Condori A, Miller DM 3rd (2019) NATF (native and tissue-specific fluorescence): a strategy for bright, tissue-specific GFP labeling of native proteins in Caenorhabditis elegans. Genetics 212(2):387–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Loria PM, Hodgkin J, Hobert O (2004) A conserved postsynaptic transmembrane protein affecting neuromuscular signaling in Caenorhabditis elegans. J Neurosci 24(9):2191–2201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fares H, Greenwald I (2001) Genetic analysis of endocytosis in Caenorhabditis elegans: coelomocyte uptake defective mutants. Genetics 159(1):133–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hermann GJ, Schroeder LK, Hieb CA, Kershner AM, Rabbitts BM, Fonarev P, Grant BD, Priess JR (2005) Genetic analysis of lysosomal trafficking in Caenorhabditis elegans. Mol Biol Cell 16(7):3273–3288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Okkema PG, Harrison SW, Plunger V, Aryana A, Fire A (1993) Sequence requirements for myosin gene expression and regulation in Caenorhabditis elegans. Genetics 135(2):385–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hao L, Johnsen R, Lauter G, Baillie D, Burglin TR (2006) Comprehensive analysis of gene expression patterns of hedgehog-related genes. BMC Genomics 7:280

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Potter CJ, Tasic B, Russler EV, Liang L, Luo L (2010) The Q system: a repressible binary system for transgene expression, lineage tracing, and mosaic analysis. Cell 141(3):536–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Feil R, Wagner J, Metzger D, Chambon P (1997) Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains. Biochem Biophys Res Commun 237(3):752–757

    Article  CAS  PubMed  Google Scholar 

  35. Wei X, Potter CJ, Luo L, Shen K (2012) Controlling gene expression with the Q repressible binary expression system in Caenorhabditis elegans. Nat Methods 9(4):391–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gottschalk A, Schafer WR (2006) Visualization of integral and peripheral cell surface proteins in live Caenorhabditis elegans. J Neurosci Methods 154(1-2):68–79

    Article  CAS  PubMed  Google Scholar 

  37. Filonov GS, Piatkevich KD, Ting LM, Zhang J, Kim K, Verkhusha VV (2011) Bright and stable near-infrared fluorescent protein for in vivo imaging. Nat Biotechnol 29(8):757–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mello CC, Kramer JM, Stinchcomb D, Ambros V (1991) Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J 10(12):3959–3970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Frokjaer-Jensen C, Davis MW, Hopkins CE, Newman BJ, Thummel JM, Olesen SP, Grunnet M, Jorgensen EM (2008) Single-copy insertion of transgenes in Caenorhabditis elegans. Nat Genet 40(11):1375–1383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Praitis V, Casey E, Collar D, Austin J (2001) Creation of low-copy integrated transgenic lines in Caenorhabditis elegans. Genetics 157(3):1217–1226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Frokjaer-Jensen C, Davis MW, Sarov M, Taylor J, Flibotte S, LaBella M, Pozniakovsky A, Moerman DG, Jorgensen EM (2014) Random and targeted transgene insertion in Caenorhabditis elegans using a modified Mos1 transposon. Nat Methods 11(5):529–534

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Nance J, Frokjaer-Jensen C (2019) The Caenorhabditis elegans transgenic toolbox. Genetics 212(4):959–990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Attreed M, Bülow HE (2015) A transgenic approach to live imaging of heparan sulfate modification patterns. Methods Mol Biol 1229:253–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. van de Westerlo EM, Smetsers TF, Dennissen MA, Linhardt RJ, Veerkamp JH, van Muijen GN, van Kuppevelt TH (2002) Human single chain antibodies against heparin: selection, characterization, and effect on coagulation. Blood 99(7):2427–2433

    Article  PubMed  Google Scholar 

  45. van Kuppevelt TH, Dennissen MA, van Venrooij WJ, Hoet RM, Veerkamp JH (1998) Generation and application of type-specific anti-heparan sulfate antibodies using phage display technology. Further evidence for heparan sulfate heterogeneity in the kidney. J Biol Chem 273(21):12960–12966

    Article  PubMed  Google Scholar 

  46. Smits NC, Lensen JF, Wijnhoven TJ, Ten Dam GB, Jenniskens GJ, van Kuppevelt TH (2006) Phage display-derived human antibodies against specific glycosaminoglycan epitopes. Methods Enzymol 416:61–87

    Article  CAS  PubMed  Google Scholar 

  47. Wijnhoven TJ, van de Westerlo EM, Smits NC, Lensen JF, Rops AL, van der Vlag J, Berden JH, van den Heuvel LP, van Kuppevelt TH (2008) Characterization of anticoagulant heparinoids by immunoprofiling. Glycoconj J 25(2):177–185

    Article  CAS  PubMed  Google Scholar 

  48. ten Dam GB, van de Westerlo EM, Smetsers TF, Willemse M, van Muijen GN, Merry CL, Gallagher JT, Kim YS, van Kuppevelt TH (2004) Detection of 2-O-sulfated iduronate and N-acetylglucosamine units in heparan sulfate by an antibody selected against acharan sulfate (IdoA2S-GlcNAc)n. J Biol Chem 279(37):38346–38352

    Article  PubMed  CAS  Google Scholar 

  49. Smits NC, Kurup S, Rops AL, ten Dam GB, Massuger LF, Hafmans T, Turnbull JE, Spillmann D, Li JP, Kennel SJ, Wall JS, Shworak NW, Dekhuijzen PN, van der Vlag J, van Kuppevelt TH (2010) The heparan sulfate motif (GlcNS6S-IdoA2S)3, common in heparin, has a strict topography and is involved in cell behavior and disease. J Biol Chem 285(52):41143–41151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jenniskens GJ, Oosterhof A, Brandwijk R, Veerkamp JH, van Kuppevelt TH (2000) Heparan sulfate heterogeneity in skeletal muscle basal lamina: demonstration by phage display-derived antibodies. J Neurosci 20(11):4099–4111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Smetsers TF, van de Westerlo EM, ten Dam GB, Overes IM, Schalkwijk J, van Muijen GN, van Kuppevelt TH (2004) Human single-chain antibodies reactive with native chondroitin sulfate detect chondroitin sulfate alterations in melanoma and psoriasis. J Invest Dermatol 122(3):707–716

    Article  CAS  PubMed  Google Scholar 

  52. Purushothaman A, Fukuda J, Mizumoto S, ten Dam GB, van Kuppevelt TH, Kitagawa H, Mikami T, Sugahara K (2007) Functions of chondroitin sulfate/dermatan sulfate chains in brain development. Critical roles of E and iE disaccharide units recognized by a single chain antibody GD3G7. J Biol Chem 282(27):19442–19452

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work in the author’s lab is supported by grants from the National Institute of Health (U01CA241981). The author wishes to thank M. Attreed for the images in Fig. 2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannes E. Bülow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bülow, H.E. (2022). Imaging Glycosaminoglycan Modification Patterns In Vivo. In: Balagurunathan, K., Nakato, H., Desai, U., Saijoh, Y. (eds) Glycosaminoglycans. Methods in Molecular Biology, vol 2303. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1398-6_42

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1398-6_42

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1397-9

  • Online ISBN: 978-1-0716-1398-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics