Skip to main content

Analyses of Inositol Phosphates and Phosphoinositides by Strong Anion Exchange (SAX)-HPLC

  • Protocol
  • First Online:
Plant Lipids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2295))

Abstract

The phosphate esters of myo-inositol (Ins) occur ubiquitously in biology. These molecules exist as soluble or membrane-resident derivatives and regulate a plethora of cellular functions including phosphate homeostasis, DNA repair, vesicle trafficking, metabolism, cell polarity, tip-directed growth, and membrane morphogenesis. Phosphorylation of all inositol hydroxyl groups generates phytic acid (InsP6), the most abundant inositol phosphate present in eukaryotic cells. However, phytic acid is not the most highly phosphorylated naturally occurring inositol phosphate. Specialized small molecule kinases catalyze the formation of the so-called myo-inositol pyrophosphates (PP-InsPs), such as InsP7 and InsP8. These molecules are characterized by one or several “high-energy” diphosphate moieties and are ubiquitous in eukaryotic cells. In plants, PP-InsPs play critical roles in immune responses and nutrient sensing. The detection of inositol derivatives in plants is challenging. This is particularly the case for inositol pyrophosphates because diphospho bonds are labile in plant cell extracts due to high amounts of acid phosphatase activity. We present two steady-state inositol labeling-based techniques coupled with strong anion exchange (SAX)-HPLC analyses that allow robust detection and quantification of soluble and membrane-resident inositol polyphosphates in plant extracts. These techniques will be instrumental to uncover the cellular and physiological processes controlled by these intriguing regulatory molecules in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Streb H, Irvine RF, Berridge MJ, Schulz I (1983) Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate. Nature 306(5938):67–69

    Article  CAS  Google Scholar 

  2. York JD, Odom AR, Murphy R, Ives EB, Wente SR (1999) A phospholipase C-dependent inositol polyphosphate kinase pathway required for efficient messenger RNA export. Science 285(5424):96–100

    Article  CAS  Google Scholar 

  3. Munnik T, Nielsen E (2011) Green light for polyphosphoinositide signals in plants. Curr Opin Plant Biol 14(5):489–497. https://doi.org/10.1016/j.pbi.2011.06.007

    Article  CAS  PubMed  Google Scholar 

  4. Munnik T, Vermeer JE (2010) Osmotic stress-induced phosphoinositide and inositol phosphate signalling in plants. Plant Cell Environ 33(4):655–669. https://doi.org/10.1111/j.1365-3040.2009.02097.x

    Article  CAS  PubMed  Google Scholar 

  5. Raboy V (2003) myo-Inositol-1,2,3,4,5,6-hexakisphosphate. Phytochemistry 64(6):1033–1043

    Article  CAS  Google Scholar 

  6. Murphy AM, Otto B, Brearley CA, Carr JP, Hanke DE (2008) A role for inositol hexakisphosphate in the maintenance of basal resistance to plant pathogens. Plant J 56(4):638–652. https://doi.org/10.1111/j.1365-313X.2008.03629.x

    Article  CAS  PubMed  Google Scholar 

  7. Lee HS, Lee DH, Cho HK, Kim SH, Auh JH, Pai HS (2015) InsP6-sensitive variants of the Gle1 mRNA export factor rescue growth and fertility defects of the ipk1 low-phytic-acid mutation in Arabidopsis. Plant Cell 27(2):417–431. https://doi.org/10.1105/tpc.114.132134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kuo HF, Hsu YY, Lin WC, Chen KY, Munnik T, Brearley CA, Chiou TJ (2018) Arabidopsis inositol phosphate kinases IPK1 and ITPK1 constitute a metabolic pathway in maintaining phosphate homeostasis. Plant J. https://doi.org/10.1111/tpj.13974

  9. Stephens L, Radenberg T, Thiel U, Vogel G, Khoo KH, Dell A, Jackson TR, Hawkins PT, Mayr GW (1993) The detection, purification, structural characterization, and metabolism of diphosphoinositol pentakisphosphate(s) and bisdiphosphoinositol tetrakisphosphate(s). J Biol Chem 268(6):4009–4015

    Article  CAS  Google Scholar 

  10. Menniti FS, Miller RN, Putney JW Jr, Shears SB (1993) Turnover of inositol polyphosphate pyrophosphates in pancreatoma cells. J Biol Chem 268(6):3850–3856

    Article  CAS  Google Scholar 

  11. York SJ, Armbruster BN, Greenwell P, Petes TD, York JD (2005) Inositol diphosphate signaling regulates telomere length. J Biol Chem 280(6):4264–4269. https://doi.org/10.1074/jbc.M412070200

    Article  CAS  PubMed  Google Scholar 

  12. Pulloor NK, Nair S, McCaffrey K, Kostic AD, Bist P, Weaver JD, Riley AM, Tyagi R, Uchil PD, York JD, Snyder SH, Garcia-Sastre A, Potter BV, Lin R, Shears SB, Xavier RJ, Krishnan MN (2014) Human genome-wide RNAi screen identifies an essential role for inositol pyrophosphates in Type-I interferon response. PLoS Pathog 10(2):e1003981. https://doi.org/10.1371/journal.ppat.1003981

    Article  PubMed  PubMed Central  Google Scholar 

  13. Saiardi A, Sciambi C, McCaffery JM, Wendland B, Snyder SH (2002) Inositol pyrophosphates regulate endocytic trafficking. Proc Natl Acad Sci U S A 99(22):14206–14211. https://doi.org/10.1073/pnas.212527899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wilson MS, Livermore TM, Saiardi A (2013) Inositol pyrophosphates: between signalling and metabolism. Biochem J 452(3):369–379. https://doi.org/10.1042/BJ20130118

    Article  CAS  PubMed  Google Scholar 

  15. Thota SG, Bhandari R (2015) The emerging roles of inositol pyrophosphates in eukaryotic cell physiology. J Biosci 40(3):593–605

    Article  CAS  Google Scholar 

  16. Saiardi A, Erdjument-Bromage H, Snowman AM, Tempst P, Snyder SH (1999) Synthesis of diphosphoinositol pentakisphosphate by a newly identified family of higher inositol polyphosphate kinases. Curr Biol 9(22):1323–1326

    Article  CAS  Google Scholar 

  17. Mulugu S, Bai W, Fridy PC, Bastidas RJ, Otto JC, Dollins DE, Haystead TA, Ribeiro AA, York JD (2007) A conserved family of enzymes that phosphorylate inositol hexakisphosphate. Science 316(5821):106–109. https://doi.org/10.1126/science.1139099

    Article  CAS  PubMed  Google Scholar 

  18. Lin H, Fridy PC, Ribeiro AA, Choi JH, Barma DK, Vogel G, Falck JR, Shears SB, York JD, Mayr GW (2009) Structural analysis and detection of biological inositol pyrophosphates reveal that the family of VIP/diphosphoinositol pentakisphosphate kinases are 1/3-kinases. J Biol Chem 284(3):1863–1872. https://doi.org/10.1074/jbc.M805686200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Flores S, Smart CC (2000) Abscisic acid-induced changes in inositol metabolism in Spirodela polyrrhiza. Planta 211(6):823–832. https://doi.org/10.1007/s004250000348

    Article  CAS  PubMed  Google Scholar 

  20. Brearley CA, Hanke DE (1996) Inositol phosphates in barley (Hordeum vulgare L.) aleurone tissue are stereochemically similar to the products of breakdown of InsP6 in vitro by wheat-bran phytase. Biochem J 318(Pt 1):279–286. https://doi.org/10.1042/bj3180279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dorsch JA, Cook A, Young KA, Anderson JM, Bauman AT, Volkmann CJ, Murthy PP, Raboy V (2003) Seed phosphorus and inositol phosphate phenotype of barley low phytic acid genotypes. Phytochemistry 62(5):691–706. https://doi.org/10.1016/s0031-9422(02)00610-6

    Article  CAS  PubMed  Google Scholar 

  22. Desai M, Rangarajan P, Donahue JL, Williams SP, Land ES, Mandal MK, Phillippy BQ, Perera IY, Raboy V, Gillaspy GE (2014) Two inositol hexakisphosphate kinases drive inositol pyrophosphate synthesis in plants. Plant J 80(4):642–653. https://doi.org/10.1111/tpj.12669

    Article  CAS  PubMed  Google Scholar 

  23. Laha D, Johnen P, Azevedo C, Dynowski M, Weiss M, Capolicchio S, Mao H, Iven T, Steenbergen M, Freyer M, Gaugler P, de Campos MK, Zheng N, Feussner I, Jessen HJ, Van Wees SC, Saiardi A, Schaaf G (2015) VIH2 regulates the synthesis of inositol pyrophosphate InsP8 and jasmonate-dependent defenses in Arabidopsis. Plant Cell 27(4):1082–1097. https://doi.org/10.1105/tpc.114.135160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bluher D, Laha D, Thieme S, Hofer A, Eschen-Lippold L, Masch A, Balcke G, Pavlovic I, Nagel O, Schonsky A, Hinkelmann R, Worner J, Parvin N, Greiner R, Weber S, Tissier A, Schutkowski M, Lee J, Jessen H, Schaaf G, Bonas U (2017) A 1-phytase type III effector interferes with plant hormone signaling. Nat Commun 8(1):2159. https://doi.org/10.1038/s41467-017-02195-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Laha D, Parvin N, Dynowski M, Johnen P, Mao H, Bitters ST, Zheng N, Schaaf G (2016) Inositol polyphosphate binding specificity of the jasmonate receptor complex. Plant Physiol 171(4):2364–2370. https://doi.org/10.1104/pp.16.00694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wild R, Gerasimaite R, Jung JY, Truffault V, Pavlovic I, Schmidt A, Saiardi A, Jessen HJ, Poirier Y, Hothorn M, Mayer A (2016) Control of eukaryotic phosphate homeostasis by inositol polyphosphate sensor domains. Science 352(6288):986–990. https://doi.org/10.1126/science.aad9858

    Article  CAS  PubMed  Google Scholar 

  27. Zhu J, Lau K, Puschmann R, Harmel RK, Zhang Y, Pries V, Gaugler P, Broger L, Dutta AK, Jessen HJ, Schaaf G, Fernie AR, Hothorn LA, Fiedler D, Hothorn M (2019) Two bifunctional inositol pyrophosphate kinases/phosphatases control plant phosphate homeostasis. eLife 8. doi:https://doi.org/10.7554/eLife.43582

  28. Dong J, Ma G, Sui L, Wei M, Satheesh V, Zhang R, Ge S, Li J, Zhang TE, Wittwer C, Jessen HJ, Zhang H, An GY, Chao DY, Liu D, Lei M (2019) Inositol pyrophosphate InsP8 acts as an intracellular phosphate signal in Arabidopsis. Mol Plant 12(11):1463–1473. https://doi.org/10.1016/j.molp.2019.08.002

    Article  CAS  PubMed  Google Scholar 

  29. Couso I, Evans BS, Li J, Liu Y, Ma F, Diamond S, Allen DK, Umen JG (2016) Synergism between inositol polyphosphates and TOR kinase Signaling in nutrient sensing, growth control, and lipid metabolism in Chlamydomonas. Plant Cell 28(9):2026–2042. https://doi.org/10.1105/tpc.16.00351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Laha D (2017) Functional characterization of inositol pyrophosphates in Arabidopsis thaliana. Shaker Verlag, Herzogenrath. 978-3-8440-5493-4

    Google Scholar 

  31. Laha D, Parvin N, Hofer A, Giehl RFH, Fernandez-Rebollo N, von Wiren N, Saiardi A, Jessen HJ, Schaaf G (2019) Arabidopsis ITPK1 and ITPK2 have an evolutionarily conserved phytic acid kinase activity. ACS Chem Biol 14(10):2127–2133. https://doi.org/10.1021/acschembio.9b00423

    Article  CAS  PubMed  Google Scholar 

  32. Dickson EJ, Hille B (2019) Understanding phosphoinositides: rare, dynamic, and essential membrane phospholipids. Biochem J 476(1):1–23. https://doi.org/10.1042/BCJ20180022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Grabon A, Bankaitis VA, McDermott MI (2019) The interface between phosphatidylinositol transfer protein function and phosphoinositide signaling in higher eukaryotes. J Lipid Res 60(2):242–268. https://doi.org/10.1194/jlr.R089730

    Article  CAS  PubMed  Google Scholar 

  34. Kf de Campos M, Schaaf G (2017) The regulation of cell polarity by lipid transfer proteins of the SEC14 family. Curr Opin Plant Biol 40:158–168. https://doi.org/10.1016/j.pbi.2017.09.007

    Article  CAS  PubMed  Google Scholar 

  35. Hempel F, Stenzel I, Heilmann M, Krishnamoorthy P, Menzel W, Golbik R, Helm S, Dobritzsch D, Baginsky S, Lee J, Hoehenwarter W, Heilmann I (2017) MAPKs influence pollen tube growth by controlling the formation of phosphatidylinositol 4,5-bisphosphate in an apical plasma membrane domain. Plant Cell 29(12):3030–3050. https://doi.org/10.1105/tpc.17.00543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tejos R, Sauer M, Vanneste S, Palacios-Gomez M, Li H, Heilmann M, van Wijk R, Vermeer JE, Heilmann I, Munnik T, Friml J (2014) Bipolar plasma membrane distribution of phosphoinositides and their requirement for auxin-mediated cell polarity and patterning in Arabidopsis. Plant Cell 26(5):2114–2128. https://doi.org/10.1105/tpc.114.126185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kusano H, Testerink C, Vermeer JE, Tsuge T, Shimada H, Oka A, Munnik T, Aoyama T (2008) The Arabidopsis phosphatidylinositol phosphate 5-kinase PIP5K3 is a key regulator of root hair tip growth. Plant Cell 20(2):367–380. https://doi.org/10.1105/tpc.107.056119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Stenzel I, Ischebeck T, Konig S, Holubowska A, Sporysz M, Hause B, Heilmann I (2008) The type B phosphatidylinositol-4-phosphate 5-kinase 3 is essential for root hair formation in Arabidopsis thaliana. Plant Cell 20(1):124–141. https://doi.org/10.1105/tpc.107.052852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lin F, Krishnamoorthy P, Schubert V, Hause G, Heilmann M, Heilmann I (2019) A dual role for cell plate-associated PI4Kbeta in endocytosis and phragmoplast dynamics during plant somatic cytokinesis. EMBO J 38(4). https://doi.org/10.15252/embj.2018100303

  40. Stolz LE, Kuo WJ, Longchamps J, Sekhon MK, York JD (1998) INP51, a yeast inositol polyphosphate 5-phosphatase required for phosphatidylinositol 4,5-bisphosphate homeostasis and whose absence confers a cold-resistant phenotype. J Biol Chem 273(19):11852–11861. https://doi.org/10.1074/jbc.273.19.11852

    Article  CAS  PubMed  Google Scholar 

  41. Bonangelino CJ, Nau JJ, Duex JE, Brinkman M, Wurmser AE, Gary JD, Emr SD, Weisman LS (2002) Osmotic stress-induced increase of phosphatidylinositol 3,5-bisphosphate requires Vac14p, an activator of the lipid kinase Fab1p. J Cell Biol 156(6):1015–1028. https://doi.org/10.1083/jcb.200201002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Duina AA, Miller ME, Keeney JB (2014) Budding yeast for budding geneticists: a primer on the Saccharomyces cerevisiae model system. Genetics 197(1):33–48. https://doi.org/10.1534/genetics.114.163188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Audhya A, Emr SD (2003) Regulation of PI4,5P2 synthesis by nuclear-cytoplasmic shuttling of the Mss4 lipid kinase. EMBO J 22(16):4223–4236. https://doi.org/10.1093/emboj/cdg397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Stefan CJ, Audhya A, Emr SD (2002) The yeast synaptojanin-like proteins control the cellular distribution of phosphatidylinositol (4,5)-bisphosphate. Mol Biol Cell 13(2):542–557. https://doi.org/10.1091/mbc.01-10-0476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Schu PV, Takegawa K, Fry MJ, Stack JH, Waterfield MD, Emr SD (1993) Phosphatidylinositol 3-kinase encoded by yeast VPS34 gene essential for protein sorting. Science 260(5104):88–91. https://doi.org/10.1126/science.8385367

    Article  CAS  PubMed  Google Scholar 

  46. Schaaf G, Ortlund EA, Tyeryar KR, Mousley CJ, Ile KE, Garrett TA, Ren J, Woolls MJ, Raetz CR, Redinbo MR, Bankaitis VA (2008) Functional anatomy of phospholipid binding and regulation of phosphoinositide homeostasis by proteins of the sec14 superfamily. Mol Cell 29(2):191–206. https://doi.org/10.1016/j.molcel.2007.11.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Phillips SE, Sha B, Topalof L, Xie Z, Alb JG, Klenchin VA, Swigart P, Cockcroft S, Martin TF, Luo M, Bankaitis VA (1999) Yeast Sec14p deficient in phosphatidylinositol transfer activity is functional in vivo. Mol Cell 4(2):187–197. https://doi.org/10.1016/s1097-2765(00)80366-4

    Article  CAS  PubMed  Google Scholar 

  48. Munnik T (2013) Analysis of D3-,4-,5-phosphorylated phosphoinositides using HPLC. Methods Mol Biol 1009:17–24. https://doi.org/10.1007/978-1-62703-401-2_2

    Article  CAS  PubMed  Google Scholar 

  49. Scholl RL, May ST, Ware DH (2000) Seed and molecular resources for Arabidopsis. Plant Physiol 124(4):1477–1480. https://doi.org/10.1104/pp.124.4.1477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Robinson JS, Klionsky DJ, Banta LM, Emr SD (1988) Protein sorting in Saccharomyces cerevisiae: isolation of mutants defective in the delivery and processing of multiple vacuolar hydrolases. Mol Cell Biol 8(11):4936–4948. https://doi.org/10.1128/mcb.8.11.4936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zonneveld BJM (1986) Cheap and simple yeast media. J Microbiol Meth 4(5–6):287–291. https://doi.org/10.1016/0167-7012(86)90040-0

    Article  CAS  Google Scholar 

  52. Azevedo C, Saiardi A (2006) Extraction and analysis of soluble inositol polyphosphates from yeast. Nat Protoc 1(5):2416–2422. https://doi.org/10.1038/nprot.2006.337

    Article  CAS  PubMed  Google Scholar 

  53. Stevenson-Paulik J, Bastidas RJ, Chiou ST, Frye RA, York JD (2005) Generation of phytate-free seeds in Arabidopsis through disruption of inositol polyphosphate kinases. Proc Natl Acad Sci U S A 102(35):12612–12617. https://doi.org/10.1073/pnas.0504172102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank L. Schlüter and D. Herrmann for technical assistance. This work was funded by grants from the Deutsche Forschungsgemeinschaft (research fellowship LA 4541/1-1 to D.L., and SCHA 1274/4-1 and Research Training Group GRK 2064 to G.S.). D.L. further acknowledges the MRC/UCL Laboratory for Molecular Cell Biology University Unit (MC_UU_12018/4) for the support of the Saiardi Lab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Schaaf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Laha, D., Kamleitner, M., Johnen, P., Schaaf, G. (2021). Analyses of Inositol Phosphates and Phosphoinositides by Strong Anion Exchange (SAX)-HPLC. In: Bartels, D., Dörmann, P. (eds) Plant Lipids. Methods in Molecular Biology, vol 2295. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1362-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1362-7_20

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1361-0

  • Online ISBN: 978-1-0716-1362-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics