Skip to main content

Transcript Isoform-Specific Estimation of Poly(A) Tail Length by Nanopore Sequencing of Native RNA

  • Protocol
  • First Online:
RNA Bioinformatics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2284))

Abstract

The poly(A) tail is a homopolymeric stretch of adenosine at the 3′-end of mature RNA transcripts and its length plays an important role in nuclear export, stability, and translational regulation of mRNA. Existing techniques for genome-wide estimation of poly(A) tail length are based on short-read sequencing. These methods are limited because they sequence a synthetic DNA copy of mRNA instead of the native transcripts. Furthermore, they can identify only a short segment of the transcript proximal to the poly(A) tail which makes it difficult to assign the measured poly(A) length uniquely to a single transcript isoform. With the introduction of native RNA sequencing by Oxford Nanopore Technologies, it is now possible to sequence full-length native RNA. A single long read contains both the transcript and the associated poly(A) tail, thereby making transcriptome-wide isoform-specific poly(A) tail length assessment feasible. We developed tailfindr—an R-based package for estimating poly(A) tail length from Oxford Nanopore sequencing data. In this chapter, we describe in detail the pipeline for transcript isoform-specific poly(A) tail profiling based on native RNA Nanopore sequencing—from library preparation to downstream data analysis with tailfindr.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bardwell VJ, Zarkower D, Edmonds M, Wickens M (1990) The enzyme that adds poly(A) to mRNAs is a classical poly(A) polymerase. Mol Cell Biol 10:846–849. https://doi.org/10.1128/mcb.10.2.846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Huang Y, Carmichael GG (1996) Role of polyadenylation in nucleocytoplasmic transport of mRNA. Mol Cell Biol 16:1534–1542. https://doi.org/10.1128/mcb.16.4.1534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Meyer S, Temme C, Wahle E (2004) Messenger RNA turnover in eukaryotes: pathways and enzymes. Crit Rev Biochem Mol Biol 39:197–216. https://doi.org/10.1080/10409230490513991

    Article  CAS  PubMed  Google Scholar 

  4. Beilharz TH, Preiss T (2007) Widespread use of poly(A) tail length control to accentuate expression of the yeast transcriptome. RNA 13:982–997. https://doi.org/10.1261/rna.569407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Subtelny AO, Eichhorn SW, Chen GR et al (2014) Poly(A)-tail profiling reveals an embryonic switch in translational control. Nature 508:66–71. https://doi.org/10.1038/nature13007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lima SA, Chipman LB, Nicholson AL et al (2017) Short poly(A) tails are a conserved feature of highly expressed genes. Nat Struct Mol Biol 24:1057–1063. https://doi.org/10.1038/nsmb.3499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chang H, Lim J, Ha M, Kim VN (2014) TAIL-seq: genome-wide determination of poly(A) tail length and 3′ end modifications. Mol Cell 53:1044–1052. https://doi.org/10.1016/j.molcel.2014.02.007

    Article  CAS  PubMed  Google Scholar 

  8. Woo YM, Kwak Y, Namkoong S et al (2018) TED-Seq identifies the dynamics of poly(A) length during ER stress. Cell Rep 24:3630–3641.e7. https://doi.org/10.1016/j.celrep.2018.08.084

    Article  CAS  PubMed  Google Scholar 

  9. Hite JM, Eckert KA, Cheng KC (1996) Factors affecting fidelity of DNA synthesis during PCR amplification of d(C-A)n•d(G-T)n microsatellite repeats. Nucleic Acids Res 24:2429–2434. https://doi.org/10.1093/nar/24.12.2429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Murray EL, Schoenberg DR (2008) Assays for determining poly(A) tail length and the polarity of mRNA decay in mammalian cells. Methods Enzymol 448:483–504. https://doi.org/10.1016/S0076-6879(08)02624-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hommelsheim CM, Frantzeskakis L, Huang M, Ülker B (2014) PCR amplification of repetitive DNA: a limitation to genome editing technologies and many other applications. Sci Rep 4:5052. https://doi.org/10.1038/srep05052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Krause M, Niazi AM, Labun K et al (2019) tailfindr: alignment-free poly(A) length measurement for Oxford Nanopore RNA and DNA sequencing. RNA 25:1229. https://doi.org/10.1261/rna.071332.119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Legnini I, Alles J, Karaiskos N et al (2019) FLAM-seq: full-length mRNA sequencing reveals principles of poly(A) tail length control. Nat Methods 16:879–886. https://doi.org/10.1038/s41592-019-0503-y

    Article  CAS  PubMed  Google Scholar 

  14. Workman RE, Tang AD, Tang PS et al (2019) Nanopore native RNA sequencing of a human poly(A) transcriptome. Nat Methods 16:1297. https://doi.org/10.1038/s41592-019-0617-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Byrne A, Cole C, Volden R, Vollmers C (2019) Realizing the potential of full-length transcriptome sequencing. Philos Trans R Soc Lond Ser B Biol Sci 374:20190097. https://doi.org/10.1098/rstb.2019.0097

    Article  CAS  Google Scholar 

  16. Garalde DR, Snell EA, Jachimowicz D et al (2018) Highly parallel direct RNA sequencing on an array of nanopores. Nat Methods 15:201–206. https://doi.org/10.1038/nmeth.4577

    Article  CAS  PubMed  Google Scholar 

  17. Liu H, Begik O, Lucas MC et al (2019) Accurate detection of m6A RNA modifications in native RNA sequences. Nat Commun 10:4079

    Article  Google Scholar 

  18. Butler TZ, Pavlenok M, Derrington IM et al (2008) Single-molecule DNA detection with an engineered MspA protein nanopore. Proc Natl Acad Sci U S A 105:20647–20652. https://doi.org/10.1073/pnas.0807514106

    Article  PubMed  PubMed Central  Google Scholar 

  19. Cherf GM, Lieberman KR, Rashid H et al (2012) Automated forward and reverse ratcheting of DNA in a nanopore at 5-Å precision. Nat Biotechnol 30:344–348. https://doi.org/10.1038/nbt.2147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rang FJ, Kloosterman WP, de Ridder J (2018) From squiggle to basepair: computational approaches for improving nanopore sequencing read accuracy. Genome Biol 19:90. https://doi.org/10.1186/s13059-018-1462-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jain M, Fiddes IT, Miga KH et al (2015) Improved data analysis for the MinION nanopore sequencer. Nat Methods 12:351–356. https://doi.org/10.1038/nmeth.3290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wick RR, Judd LM, Holt KE (2019) Performance of neural network basecalling tools for Oxford Nanopore sequencing. Genome Biol 20:129. https://doi.org/10.1186/s13059-019-1727-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. De Coster W, D’Hert S, Schultz DT et al (2018) NanoPack: visualizing and processing long-read sequencing data. Bioinformatics 34:2666–2669. https://doi.org/10.1093/bioinformatics/bty149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Leger A, Leonardi T (2019) pycoQC, interactive quality control for Oxford Nanopore Sequencing. J Open Source Softw 4:1236. https://doi.org/10.21105/joss.01236

    Article  Google Scholar 

  25. Li H (2018) Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34:3094–3100. https://doi.org/10.1093/bioinformatics/bty191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Durinck S, Spellman PT, Birney E, Huber W (2009) Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat Protoc 4:1184–1191. https://doi.org/10.1038/nprot.2009.97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Adnan M. Niazi and Maximilian Krause contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximilian Krause .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Niazi, A.M., Krause, M., Valen, E. (2021). Transcript Isoform-Specific Estimation of Poly(A) Tail Length by Nanopore Sequencing of Native RNA. In: Picardi, E. (eds) RNA Bioinformatics. Methods in Molecular Biology, vol 2284. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1307-8_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1307-8_30

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1306-1

  • Online ISBN: 978-1-0716-1307-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics