Skip to main content

A Method for the Establishment of Human Lung Adenocarcinoma Patient-Derived Xenografts in Mice

  • Protocol
  • First Online:
Lung Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2279))

Abstract

Patient-derived xenografts (PDXs) are created by implanting human tumor tissue or cells into immunodeficent mice, and enable the study of tumor biology, biomarkers and response to therapy in vivo. This chapter describes a method for lung adenocarcinoma (LAC) PDX generation using subcutaneous implantation of tumor tissue and cell suspensions and incorporating the humanization of PDX models by reconstitution with human immune cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang D, Pham NA, Tong J et al (2017) Molecular heterogeneity of non-small cell lung carcinoma patient-derived xenografts closely reflect their primary tumors. Int J Cancer 140(3):662–673

    Article  CAS  Google Scholar 

  2. Jiang Y, Zhao J, Zhang Y et al (2018) Establishment of lung cancer patient-derived xenograft models and primary cell lines for lung cancer study. J Transl Med 16(1):138

    Article  CAS  Google Scholar 

  3. Fichtner I, Rolff J, Soong R et al (2018) Establishment of patient-derived non-small cell lung cancer xenografts as models for the identification of predictive biomarkers. Clin Cancer Res 14(20):6456–6468

    Article  Google Scholar 

  4. Kim M, Mun H, Sung CO et al (2019) Patient-derived lung cancer organoids as in vitro cancer models for therapeutic screening. Nat Commun 10(1):1–15

    Article  Google Scholar 

  5. Sachs N, Papaspyropoulos A, Zomer-van Ommen DD et al (2019) Long-term expanding human airway organoids for disease modeling. EMBO J 38(4):e100300

    Article  Google Scholar 

  6. Reyal F, Guyader C, Decraene C et al (2012) Molecular profiling of patient-derived breast cancer xenografts. Breast Cancer Res 14(1):R11

    Article  CAS  Google Scholar 

  7. Hidalgo M, Amant F, Biankin AV et al (2014) Patient-derived xenograft models: an emerging platform for translational cancer research. Cancer Discov 4(9):998–1013

    Article  CAS  Google Scholar 

  8. Johnson JR, Hammond WG, Benfield JR et al (1995) Successful xenotransplantation of human lung cancer correlates with the metastatic phenotype. Ann Thorac Surg 60(1):32–37

    Article  CAS  Google Scholar 

  9. Perez-Soler R, Kemp B, Wu QP et al (2000) Response and determinants of sensitivity to paclitaxel in human non-small cell lung cancer tumors heterotransplanted in nude mice. Clin Cancer Res 6(12):4932–4938

    CAS  PubMed  Google Scholar 

  10. Dong X, Guan J, English JC et al (2010) Patient-derived first generation xenografts of non-small cell lung cancers: promising tools for predicting drug responses for personalized chemotherapy. Clin Cancer Res 16(5):1442–1451

    Article  CAS  Google Scholar 

  11. Ilie M, Nunes M, Blot L et al (2015) Setting up a wide panel of patient-derived tumor xenografts of non-small cell lung cancer by improving the preanalytical steps. Cancer Med 4(2):201–211

    Article  CAS  Google Scholar 

  12. Merk J, Rolff J, Becker M et al (2009) Patient-derived xenografts of non-small-cell lung cancer: a pre-clinical model to evaluate adjuvant chemotherapy? Eur J Cardiothorac Surg 36(3):454–459

    Article  Google Scholar 

  13. Maemondo M, Inoue A, Kobayashi K et al (2010) Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med 362(25):2380–2388

    Article  CAS  Google Scholar 

  14. Shaw AT, Kim DW, Nakagawa K et al (2013) Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N Engl J Med 368(25):2385–2394

    Article  CAS  Google Scholar 

  15. Sundar R, Chénard-Poirier M, Collins DC et al (2017) Imprecision in the era of precision medicine in non-small cell lung cancer. Front Med 4:39

    Article  Google Scholar 

  16. Zhang Y, Yao K, Shi C et al (2015) 244-MPT overcomes gefitinib resistance in non-small cell lung cancer cells. Oncotarget 6(42):44274–44288

    Article  Google Scholar 

  17. Reck M, Rodríguez-Abreu D, Robinson AG et al (2016) Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med 375(19):1823–1833

    Article  CAS  Google Scholar 

  18. Socinski MA, Jotte RM, Cappuzzo F et al (2018) Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N Engl J Med 378(24):2288–2301

    Article  CAS  Google Scholar 

  19. Hellmann MD, Paz-Ares L, Bernabe-caro R et al (2019) Nivolumab plus ipilimumab in advanced non-small-cell lung cancer. N Engl J Med 381(21):2020–2031

    Article  CAS  Google Scholar 

  20. Ma Y, Zhang P, An G et al (2016) Induction of patient-derived xenograft formation and clinical significance of programmed cell death ligand 1 (PD-L1) in lung cancer patients. Med Sci Monit 22:4017–4025

    Article  CAS  Google Scholar 

  21. Pearson T, Greiner DL, Shultz LD (2008) Creation of “humanized” mice to study human immunity. Curr Protoc Immunol 81(1):15–21

    Article  Google Scholar 

  22. Bosma GC, Custer RP, Bosma MJ (1983) A severe combined immunodeficiency mutation in the mouse. Nature 301(5900):527–530

    Article  CAS  Google Scholar 

  23. Ito M, Hiramatsu H, Kobayashi K et al (2002) NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells. Blood 100(9):3175–3182

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed I. Saad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lundy, J., Jenkins, B.J., Saad, M.I. (2021). A Method for the Establishment of Human Lung Adenocarcinoma Patient-Derived Xenografts in Mice. In: Santiago-Cardona, P.G. (eds) Lung Cancer. Methods in Molecular Biology, vol 2279. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1278-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1278-1_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1277-4

  • Online ISBN: 978-1-0716-1278-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics