Skip to main content

Resistance of Bifidobacteria Toward Antibiotics

  • Protocol
  • First Online:
Bifidobacteria

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2278))

Abstract

The genus Bifidobacterium constitutes one of the main groups of the human microbiota and some species have a long history of safe consumption supporting an excellent safety record. However, in the context of the increasing worldwide problems associate to the rise of pathogenic microorganisms with acquired resistance to antibiotics, the risk associated to the presence of antibiotic resistance determinants should always be a key starting point for the introduction of any microbial strain into the food chain. Bifidobacteria are not an exception and the presence of resistance to antibiotics is of interest since these microorganisms could potentially act as a reservoir of such resistances. In this context it is necessary to evaluate the presence of antibiotic resistance in any bifidobacterial strain to be included into the food chain. To this end, the first step is the determination of the antibiotic resistance pattern of the strain and the comparison with the susceptibility breakpoints for that species, allowing identifying the presence of atypical resistances in the strain. In this chapter we discuss the many efforts done to harmonize the methods used for the evaluation of antimicrobial susceptibility in the genus Bifidobacterium and the currently available guidelines. Moreover, we describe, in detail, the reference protocols used for evaluating the in vitro antimicrobial activity on bifidobacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Esaiassen E, Hjerde E, Canavagh JP (2017) Bifidobacterium bacteremia: clinical characteristics and a genomic approach to assess pathogenicity. J Clin Microbiol 55:2234–2248

    Google Scholar 

  2. Lahtinen SJ, Boyle RJ, Margolles A, Frias R, Gueimonde M (2009) Safety assessment of probiotics. In: Charalampopoulos D, Rastall RA (eds) Prebiotics and probiotics science and technology. Springer-Verlag, Heidelberg, Germany

    Google Scholar 

  3. EFSA (2012) European food safety authority panel on biological hazards. Scientific opinion on the maintenance of the list of QPS biological agents intentionally added to food and feed (2012 update). EFSA J 10:3020

    Google Scholar 

  4. EFSA (2008) Update of the criteria used in the assessment of bacterial resistance to antibiotics of human or veterinary importance. EFSA J 732:1–15

    Google Scholar 

  5. Połka J, Morelli L, Patrone V (2016) Microbiological cutoff values: a critical issue in phenotypic antibiotic resistance assessment of lactobacilli and bifidobacteria. Microb Drug Resist 22:696–699

    Google Scholar 

  6. Mättö J, van Hoek AH, Doming KJ et al (2007) Susceptibility of human and probiotic Bifidobacterium spp. to selected antibiotics as determined by the Etest method. Int Dairy J 17:1123–1131

    Article  CAS  Google Scholar 

  7. ISO 10932:2010. Milk and milk products- Determination of the minimal inhibitory concentration (MIC) of antibiotics applicable to bifidobacteria and non-enterococcal lactic acid bacteria (LAB). International Organization for Standardization

    Google Scholar 

  8. EFSA (2012) Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance. EFSA J 10:2740

    Google Scholar 

  9. Duranti S, Lugli GA, Mancabelli L et al (2017) Prevalence of antibiotic resistance genes among human gut-derived bifidobacteria. Appl Environ Microbiol 83:e02894–e02816

    Google Scholar 

  10. Xu F, Wang J, Guo Y et al (2018) Antibiotic resistance, biochemical typing, and PFGE typing of Bifidobacterium strains commonly used in probiotic health foods. Food Sci Biotechnol 27:467–477

    Article  CAS  Google Scholar 

  11. Mayrhofer S, Mair C, Kneifel W, Domig KJ (2011) Susceptibility of bifidobacteria of animal origin to selected antimicrobial agents. Chemother Res Pract 2011:989520

    PubMed  PubMed Central  Google Scholar 

  12. Fang H, Edlund C, Hedberg M, Nord CE (2002) New findings in beta-lactam and metronidazole resistant Bacteroides fragilis group. Int J Antimicrob Agents 19:361–370

    Article  CAS  Google Scholar 

  13. Gueimonde M, Sanchez B, de los Reyes-Gavilán VG, Margolles A (2013) Antibiotics resistance in probiotic bacteria. Front Microbiol 4:202

    Article  Google Scholar 

  14. Zhou JS, Pillidge CJ, Gopal PK, Gill HS (2005) Antibiotic susceptibility profiles of new probiotic Lactobacillus and Bifidobacterium strains. Int J Food Microbiol 98:211–217

    Article  CAS  Google Scholar 

  15. Kiwaki M, Sato T (2009) Antimicrobial susceptibility of Bifidobacterium breve strains and genetic analysis of streptomycin resistance of probiotic B. breve strain Yakult. Int J Food Microbiol 134:211–215

    Article  CAS  Google Scholar 

  16. Sato T, Lino T (2010) Genetic analyses of the antibiotic resistance of Bifidobacterium bifidum strain Yakult YIT 4007. Int J Food Microbiol 137:254–258

    Article  CAS  Google Scholar 

  17. van Hoek AH, Mayrhofer S, Domig KJ, Aarts HJ (2008) Resistance determinant erm(X) is borne by transposon Tn5432 in Bifidobacterium thermophilum and Bifidobacterium animalis subsp. lactis. Int J Antimicrob Agents 31:544–548

    Article  CAS  Google Scholar 

  18. Martinez N, Luque R, Milani C et al (2018) A gene homologous to rRNA methylase genes confers erythomycin and clindamycin resistance in Bifidobacterium breve. Appl Environ Microbiol 84:e02888–e02817

    Article  Google Scholar 

  19. Scott KP, Melville CM, Barbosa TM, Flint HJ (2000) Occurrence of the new tetracycline resistance gene tet(W) in bacteria from the human gut. Antimicrob Agents Chemother 44:775–777

    Google Scholar 

  20. Gueimonde M, Flórez AB, van Hoek AH et al (2010) Genetic basis of tetracycline resistance in Bifidobacterium animalis subsp. lactis. Appl Environ Microbiol 76:3364–3369

    Article  CAS  Google Scholar 

  21. Flórez AB, Ammor MS, Alvarez-Martín P, Margolles A, Mayo B (2006) Molecular analysis of tet(W) gene-mediated tetracycline resistance in dominant intestinal Bifidobacterium species from healthy humans. Appl Environ Microbiol 72:7377–7379

    Article  CAS  Google Scholar 

  22. Kazimierczak KA, Flint HJ, Scott KP (2006) Comparative analysis of sequences flanking tet(W) resistance genes in multiple species of gut bacteria. Antimicrob Agents Chemother 50:2632–2639

    Article  CAS  Google Scholar 

  23. Ammor MS, Flórez AB, Alvarez-Martín P, Margolles A, Mayo B (2008) Analysis of tetracycline resistance tet(W) genes and their flanking sequences in intestinal Bifidobacterium species. Antimicrob Chemother 62:688–693

    Google Scholar 

  24. van Hoek AH, Mayrhofer S, Domig KJ et al (2008) Mosaic tetracycline resistance genes and their flanking regions in Bifidobacterium thermophilum and Lactobacillus johnsonii. Antimicrob Agents Chemother 52:248–252

    Article  CAS  Google Scholar 

  25. Aires J, Thouverez M, Doucet-Populaire F, Butel MJ (2009) Consecutive human bifidobacteria isolates and acquired tet genes. Int J Antimicrob Agents 33:291–293

    Article  CAS  Google Scholar 

  26. Wang N, Hang X, Zhang M, Liu X, Yang H (2017) Analysis of newly detected tetracycline resistance genes and their flanking sequences in human intestinal bifidobacteria. Sci Rep 7:6267

    Article  CAS  Google Scholar 

  27. Aires J, Doucet-Populaire F, Butel MJ (2007) Tetracycline resistance mediated by tet(W), tet(M), and tet(O) genes of Bifidobacterium isolates from humans. Appl Environ Microbiol 73:2751–2754

    Article  CAS  Google Scholar 

  28. Balouiri M, Sadiki M, Ibnsouda SK (2016) Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal 6:71–79

    Article  Google Scholar 

  29. EFSA (2018) Guidance on the characterisation of microorganisms used as feed additives or as production organisms. EFSA J 16(3):5206

    Google Scholar 

  30. Huys G, D'Haene K, Cnockaert M et al (2010) Intra- and interlaboratory performances of two commercial antimicrobial susceptibility testing methods for bifidobacteria and nonenterococcal lactic acid bacteria. Antimicrob Agents Chemother 54:2567–2574

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Gueimonde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gueimonde, M., Arboleya, S. (2021). Resistance of Bifidobacteria Toward Antibiotics. In: van Sinderen, D., Ventura, M. (eds) Bifidobacteria. Methods in Molecular Biology, vol 2278. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1274-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1274-3_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1273-6

  • Online ISBN: 978-1-0716-1274-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics