Skip to main content

Mechanical Permeabilization as a New Method for Assessment of Mitochondrial Function in Insect Tissues

  • Protocol
  • First Online:
Mitochondrial Medicine

Abstract

Respirometry analysis is an effective technique to assess mitochondrial physiology. Insects are valuable biochemical models to understand metabolism and human diseases. Insect flight muscle and brain have been extensively used to explore mitochondrial function due to dissection feasibility and the low sample effort to allow oxygen consumption measurements. However, adequate plasma membrane permeabilization is required for substrates/modulators to reach mitochondria. Here, we describe a new method for study of mitochondrial physiology in insect tissues based on mechanical permeabilization as a fast and reliable method that do not require the use of detergents for chemical permeabilization of plasma membrane, while preserves mitochondrial integrity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Stokes BA, Yadav S, Shokal U, Smith LC, Eleftherianos I (2015) Bacterial and fungal pattern recognition receptors in homologous innate signaling pathways of insects and mammals. Front Microbiol 6:19. https://doi.org/10.3389/fmicb.2015.00019

    Article  PubMed  PubMed Central  Google Scholar 

  2. Beenakkers AMT, Van der Horst DJ, Van Marrewijk WJA (1984) Insect flight muscle metabolism. Insect Biochem 14:243–260. https://doi.org/10.1016/0020-1790(84)90057-X

    Article  CAS  Google Scholar 

  3. Rittschof CC, Schirmeier S (2018) Insect models of central nervous system energy metabolism and its links to behavior. Glia 66:1160–1175. https://doi.org/10.1002/glia.23235

    Article  PubMed  Google Scholar 

  4. Yang Y, Xu S, Xu J, Guo Y, Yang G (2014) Adaptive evolution of mitochondrial energy metabolism genes associated with increased energy demand in flying insects. PLoS One 9:e99120. https://doi.org/10.1371/journal.pone.0099120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Baker KD, Thummel CS (2007) Diabetic larvae and obese flies-emerging studies of metabolism in Drosophila. Cell Metab 6:257–266. https://doi.org/10.1016/j.cmet.2007.09.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Morgan TH, Bridges CB (1916) Sex-linked inheritance in Drosophila. Carnegie Institution of Washington, Washington

    Book  Google Scholar 

  7. Muller HJ (1928) The production of mutations by X-rays. Proc Natl Acad Sci U S A 14:714–726. https://doi.org/10.1073/pnas.14.9.714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. The Nobel Prize in Physiology or Medicine 1995. In: NobelPrize.org. https://www.nobelprize.org/prizes/medicine/1995/summary/. Accessed 25 Nov 2019

  9. Buck L, Axel R (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65:175–187. https://doi.org/10.1016/0092-8674(91)90418-x

    Article  CAS  PubMed  Google Scholar 

  10. Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA (1996) The dorsoventral regulatory gene cassette spätzle/toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86:973–983. https://doi.org/10.1016/s0092-8674(00)80172-5

    Article  CAS  PubMed  Google Scholar 

  11. The Nobel Prize in Physiology or Medicine 2017. In: NobelPrize.org. https://www.nobelprize.org/prizes/medicine/2017/summary/. Accessed 25 Nov 2019

  12. Musselman LP, Fink JL, Narzinski K, Ramachandran PV, Hathiramani SS, Cagan RL, Baranski TJ (2011) A high-sugar diet produces obesity and insulin resistance in wild-type Drosophila. Dis Model Mech 4:842–849. https://doi.org/10.1242/dmm.007948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ordonez DG, Lee MK, Feany MB (2018) α-synuclein induces mitochondrial dysfunction through spectrin and the actin cytoskeleton. Neuron 97:108–124.e6. https://doi.org/10.1016/j.neuron.2017.11.036

    Article  CAS  PubMed  Google Scholar 

  14. Capo F, Wilson A, Di Cara F (2019) The intestine of Drosophila melanogaster: an emerging versatile model system to study intestinal epithelial homeostasis and host-microbial interactions in humans. Microorganisms 7:E336. https://doi.org/10.3390/microorganisms7090336

    Article  CAS  PubMed  Google Scholar 

  15. Clark RI, Salazar A, Yamada R, Fitz-Gibbon S, Morselli M, Alcaraz J, Rana A, Rera M, Pellegrini M, Ja WW, Walker DW (2015) Distinct shifts in microbiota composition during Drosophila aging impair intestinal function and drive mortality. Cell Rep 12:1656–1667. https://doi.org/10.1016/j.celrep.2015.08.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lee K-S, Huh S, Lee S, Wu Z, Kim A-K, Kang H-Y, Lu B (2018) Altered ER-mitochondria contact impacts mitochondria calcium homeostasis and contributes to neurodegeneration in vivo in disease models. Proc Natl Acad Sci U S A 115:E8844–E8853. https://doi.org/10.1073/pnas.1721136115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. McCommis KS, Hodges WT, Bricker DK, Wisidagama DR, Compan V, Remedi MS, Thummel CS, Finck BN (2016) An ancestral role for the mitochondrial pyruvate carrier in glucose-stimulated insulin secretion. Mol Metab 5:602–614. https://doi.org/10.1016/j.molmet.2016.06.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kuznetsov AV, Veksler V, Gellerich FN, Saks V, Margreiter R, Kunz WS (2008) Analysis of mitochondrial function in situ in permeabilized muscle fibers, tissues and cells. Nat Protoc 3:965–976. https://doi.org/10.1038/nprot.2008.61

    Article  CAS  PubMed  Google Scholar 

  19. Pesta D, Gnaiger E (2012) High-resolution respirometry: OXPHOS protocols for human cells and permeabilized fibers from small biopsies of human muscle. Methods Mol Biol 810:25–58. https://doi.org/10.1007/978-1-61779-382-0_3

    Article  CAS  PubMed  Google Scholar 

  20. Pichaud N, Ballard JWO, Tanguay RM, Blier PU (2011) Thermal sensitivity of mitochondrial functions in permeabilized muscle fibers from two populations of Drosophila simulans with divergent mitotypes. Am J Physiol Regul Integr Comp Physiol 301:R48–R59. https://doi.org/10.1152/ajpregu.00542.2010

    Article  CAS  PubMed  Google Scholar 

  21. Pichaud N, Ballard JWO, Tanguay RM, Blier PU (2013) Mitochondrial haplotype divergences affect specific temperature sensitivity of mitochondrial respiration. J Bioenerg Biomembr 45:25–35. https://doi.org/10.1007/s10863-012-9473-9

    Article  CAS  PubMed  Google Scholar 

  22. Saks VA, Veksler VI, Kuznetsov AV, Kay L, Sikk P, Tiivel T, Tranqui L, Olivares J, Winkler K, Wiedemann F, Kunz WS (1998) Permeabilized cell and skinned fiber techniques in studies of mitochondrial function in vivo. Mol Cell Biochem 184:81–100

    Article  CAS  Google Scholar 

  23. Simard CJ, Pelletier G, Boudreau LH, Hebert-Chatelain E, Pichaud N (2018) Measurement of mitochondrial oxygen consumption in permeabilized fibers of drosophila using minimal amounts of tissue. J Vis Exp (134):57376. https://doi.org/10.3791/57376

  24. Veksler VI, Kuznetsov AV, Sharov VG, Kapelko VI, Saks VA (1987) Mitochondrial respiratory parameters in cardiac tissue: a novel method of assessment by using saponin-skinned fibers. Biochim Biophys Acta 892:191–196

    Article  CAS  Google Scholar 

  25. Votion D-M, Gnaiger E, Lemieux H, Mouithys-Mickalad A, Serteyn D (2012) Physical fitness and mitochondrial respiratory capacity in horse skeletal muscle. PLoS One 7:e34890. https://doi.org/10.1371/journal.pone.0034890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Picard M, Taivassalo T, Ritchie D, Wright KJ, Thomas MM, Romestaing C, Hepple RT (2011) Mitochondrial structure and function are disrupted by standard isolation methods. PLoS One 6:e18317. https://doi.org/10.1371/journal.pone.0018317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Piper HM, Sezer O, Schleyer M, Schwartz P, Hütter JF, Spieckermann PG (1985) Development of ischemia-induced damage in defined mitochondrial subpopulations. J Mol Cell Cardiol 17:885–896

    Article  CAS  Google Scholar 

  28. Jamieson GA, Robinson DM (2014) Mammalian cell membranes: volume 2: the diversity of membranes. Elsevier, London

    Google Scholar 

  29. Raffy S, Teissié J (1999) Control of lipid membrane stability by cholesterol content. Biophys J 76:2072–2080. https://doi.org/10.1016/S0006-3495(99)77363-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Korn ED (1969) Cell membranes: structure and synthesis. Annu Rev Biochem 38:263–288. https://doi.org/10.1146/annurev.bi.38.070169.001403

    Article  CAS  PubMed  Google Scholar 

  31. Subczynski WK, Pasenkiewicz-Gierula M, Widomska J, Mainali L, Raguz M (2017) High cholesterol/low cholesterol: effects in biological membranes: a review. Cell Biochem Biophys 75:369–385. https://doi.org/10.1007/s12013-017-0792-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gimpl G, Klein U, Reiländer H, Fahrenholz F (1995) Expression of the human oxytocin receptor in baculovirus-infected insect cells: high-affinity binding is induced by a cholesterol-cyclodextrin complex. Biochemistry 34:13794–13801

    Article  CAS  Google Scholar 

  33. Dawaliby R, Trubbia C, Delporte C, Noyon C, Ruysschaert J-M, Van Antwerpen P, Govaerts C (2016) Phosphatidylethanolamine is a key regulator of membrane fluidity in eukaryotic cells. J Biol Chem 291:3658–3667. https://doi.org/10.1074/jbc.M115.706523

    Article  CAS  PubMed  Google Scholar 

  34. Krebs KC, Lan Q (2003) Isolation and expression of a sterol carrier protein-2 gene from the yellow fever mosquito, Aedes aegypti. Insect Mol Biol 12:51–60. https://doi.org/10.1046/j.1365-2583.2003.00386.x

    Article  CAS  PubMed  Google Scholar 

  35. Teulier L, Weber J-M, Crevier J, Darveau C-A (2016) Proline as a fuel for insect flight: enhancing carbohydrate oxidation in hymenopterans. Proc Biol Sci 283:20160333. https://doi.org/10.1098/rspb.2016.0333

    PubMed  PubMed Central  Google Scholar 

  36. Gaviraghi A, Oliveira MF (2019) A method for assessing mitochondrial physiology using mechanically permeabilized flight muscle of Aedes aegypti mosquitoes. Anal Biochem 576:33–41. https://doi.org/10.1016/j.ab.2019.04.005

    Article  CAS  PubMed  Google Scholar 

  37. Snodgrass RE (1959) The anatomical life of the mosquito. Smithson Misc Coll 139, 87pp

    Google Scholar 

  38. Nicholls DG, Ferguson SJ (2013) Bioenergetics, 4th edn. Academic Press, Boston, pp i–iii

    Google Scholar 

  39. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    Article  CAS  Google Scholar 

  40. Vignais PV, Vignais PM, Defaye G (1973) Adenosine diphosphate translocation in mitochondria. Nature of the receptor site for carboxyatractyloside (gummiferin). Biochemistry 12:1508–1519

    Article  CAS  Google Scholar 

  41. Rana A, Oliveira MP, Khamoui AV, Aparicio R, Rera M, Rossiter HB, Walker DW (2017) Promoting Drp1-mediated mitochondrial fission in midlife prolongs healthy lifespan of Drosophila melanogaster. Nat Commun 8:448. https://doi.org/10.1038/s41467-017-00525-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chandel NS, Budinger GR, Schumacker PT (1996) Molecular oxygen modulates cytochrome c oxidase function. J Biol Chem 271:18672–18677

    Article  CAS  Google Scholar 

  43. Kuznetsov AV, Schneeberger S, Seiler R, Brandacher G, Mark W, Steurer W, Saks V, Usson Y, Margreiter R, Gnaiger E (2004) Mitochondrial defects and heterogeneous cytochrome c release after cardiac cold ischemia and reperfusion. Am J Physiol Heart Circ Physiol 286:H1633–H1641. https://doi.org/10.1152/ajpheart.00701.2003

    Article  CAS  PubMed  Google Scholar 

  44. Santos CR, Rodovalho CM, Jablonka W, Martins AJ, Lima JBP, Dias LS, Silva-Neto MAC, Atella GC (2020) Insecticide resistance, fitness and susceptibility to Zika infection of an interbred Aedes aegypti population from Rio de Janeiro, Brazil. Parasit Vectors 13:293. https://doi.org/10.1186/s13071-020-04166-3.

Download references

Acknowledgments

We would like to thank Mrs. Geane C. Braz for the excellent technical assistance on maintenance of A. aegypti colony. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001, by the Conselho Nacional de Desenvolvimento Cientifico e Tecnológico (CNPq) [grant numbers 404153/2016-0 MFO, and 483334/2013-8 AG], and the Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) [grant numbers E-26/102.333/2013, E-26/203.043/2016, and E-26/111.169/2011]. AG and MFO are CNPq fellows [grant numbers 402409/2012-4 and 303044/2017-9] and from PAPD-FAPERJ [grant number E-44/208702/2014]. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gaviraghi, A., Aveiro, Y., Carvalho, S.S., Rosa, R.S., Oliveira, M.P., Oliveira, M.F. (2021). Mechanical Permeabilization as a New Method for Assessment of Mitochondrial Function in Insect Tissues. In: Weissig, V., Edeas, M. (eds) Mitochondrial Medicine . Methods in Molecular Biology, vol 2276. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-1266-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1266-8_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-0716-1265-1

  • Online ISBN: 978-1-0716-1266-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics