Skip to main content

Ex Vivo Model of Spontaneous Neuroretinal Degeneration for Evaluating Stem Cells’ Paracrine Properties

  • Protocol
  • First Online:
In Vitro Models for Stem Cell Therapy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2269))

Abstract

Ex vivo neuroretina cultures closely resemble in vivo conditions, retaining the complex neuroretina cells dynamics, connections, and functionality, under controlled conditions. Therefore, these models have allowed advancing in the knowledge of retinal physiology and pathobiology over the years. Furthermore, the ex vivo neuroretina models represent an adequate tool for evaluating stem cell therapies over neuroretinal degeneration processes.

Here, we describe a physically separated co-culture of neuroretina explants with stem cells to evaluate the effect of stem cells paracrine properties on spontaneous neuroretinal degeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Caffé AR, Visser H, Jansen HG, Sanyal S (1989) Histotypic differentiation of neonatal mouse retina in organ culture. Curr Eye Res 8:1083–1092. https://doi.org/10.3109/02713688908997401

    Article  PubMed  Google Scholar 

  2. Strangeways T, Honor B (1926) Experimental studies on the differentiation of embryonic tissues growing in vivo and in vitro. II The development of the isolated early embryonic eye of the fowl when cultivated in vitro. Proc R Soc L B 100:273–283

    Article  Google Scholar 

  3. Tansley K (1933) The formation of rosettes in the rat retina. Br J Ophthalmol 17:321–336. https://doi.org/10.1136/bjo.17.6.321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Trowell O (1954) A modified technique for organ culture in vitro. Exp Cell Res 6:246–248. https://doi.org/10.1016/0014-4827(54)90169-X

    Article  CAS  PubMed  Google Scholar 

  5. Rettinger CL, Wang H-C (2018) Current advancements in the development and characterization of full-thickness adult neuroretina organotypic culture systems. Cells Tissues Organs 206:119–132. https://doi.org/10.1159/000497296

    Article  PubMed  Google Scholar 

  6. Ogilvie JM, Speck JD, Lett JM, Fleming TT (1999) A reliable method for organ culture of neonatal mouse retina with long-term survival. J Neurosci Methods 87:57–65

    Article  CAS  Google Scholar 

  7. Fernandez-Bueno I, Fernández-Sánchez L, Gayoso MJMJ et al (2012) Time course modifications in organotypic culture of human neuroretina. Exp Eye Res 104:26–38. https://doi.org/10.1016/j.exer.2012.08.012

    Article  CAS  PubMed  Google Scholar 

  8. Osborne A, Hopes M, Wright P et al (2016) Human organotypic retinal cultures (HORCs) as a chronic experimental model for investigation of retinal ganglion cell degeneration. Exp Eye Res 143:28–38. https://doi.org/10.1016/j.exer.2015.09.012

    Article  CAS  PubMed  Google Scholar 

  9. Labrador-Velandia S, Alonso-Alonso ML, Di Lauro S et al (2019) Mesenchymal stem cells provide paracrine neuroprotective resources that delay degeneration of co-cultured organotypic neuroretinal cultures. Exp Eye Res 185:107671. https://doi.org/10.1016/j.exer.2019.05.011

    Article  CAS  PubMed  Google Scholar 

  10. Caffé AR, Ahuja P, Holmqvist B et al (2001) Mouse retina explants after long-term culture in serum free medium. J Chem Neuroanat 22:263–273

    Article  Google Scholar 

  11. Lucas D, Trowell O (1958) In vitro culture of the eye and the retina of the mouse and rat. J Embryol Exp Morphol 6:178–182

    CAS  PubMed  Google Scholar 

  12. Lucas D (1958) Inherited retinal dystrophy in the mouse: its appearance in eyes and retinae cultured in vitro. J Embryol Exp Morphol 6:589–592

    CAS  PubMed  Google Scholar 

  13. Sidman R (1963) Organ-culture analysis of inherited retinal degeneration in rodents. Natl Cancer Inst Monogr 11:227–246

    CAS  PubMed  Google Scholar 

  14. Tamai M, Takahashi J, Noji T, Mizuno K (1978) Development of photoreceptor cells in vitro: influence and phagocytic activity of homo- and heterogenic pigment epithelium. Exp Eye Res 26:581–590. https://doi.org/10.1016/0014-4835(78)90069-6

    Article  CAS  PubMed  Google Scholar 

  15. Caffé A, Söderpalm A, van Veen T (1993) Photoreceptor-specific protein expression of mouse retina in organ culture and retardation of rd degeneration in vitro by a combination of basic fibroblast and nerve growth factors. Curr Eye Res 12:719–726. https://doi.org/10.3109/02713689308995767

    Article  PubMed  Google Scholar 

  16. Engelsberg K, Johansson K, Ghosh F (2005) Development of the embryonic porcine neuroretina in vitro. Ophthalmic Res 37:104–111. https://doi.org/10.1159/000084252

    Article  PubMed  Google Scholar 

  17. Feigenspan A, Bormann J, Wässle H (1993) Organotypic slice culture of the mammalian retina. Vis Neurosci 10:203–217. https://doi.org/10.1017/s0952523800003618

    Article  CAS  PubMed  Google Scholar 

  18. Katsuki H, Yamamoto R, Nakata D et al (2004) Neuronal nitric oxide synthase is crucial for ganglion cell death in rat retinal explant cultures. J Pharmacol Sci 94:77–80. https://doi.org/10.1254/jphs.94.77

    Article  CAS  PubMed  Google Scholar 

  19. Peynshaert K, Devoldere J, Forster V et al (2017) Toward smart design of retinal drug carriers: a novel bovine retinal explant model to study the barrier role of the vitreoretinal interface. Drug Deliv 24:1384–1394. https://doi.org/10.1080/10717544.2017.1375578

    Article  CAS  PubMed  Google Scholar 

  20. Alt A, Hilgers R-D, Tura A et al (2013) The neuroprotective potential of rho-kinase inhibition in promoting cell survival and reducing reactive gliosis in response to hypoxia in isolated bovine retina. Cell Physiol Biochem 32:218–234. https://doi.org/10.1159/000350138

    Article  CAS  PubMed  Google Scholar 

  21. Winkler J, Hagelstein S, Rohde M, Laqua H (2002) Cellular and cytoskeletal dynamics within organ cultures of porcine neuroretina. Exp Eye Res 74:777–788. https://doi.org/10.1006/exer.2002.1188

    Article  CAS  PubMed  Google Scholar 

  22. Di Lauro S, Rodriguez-Crespo D, Gayoso MJMJ et al (2016) A novel coculture model of porcine central neuroretina explants and retinal pigment epithelium cells. Mol Vis 22:243–253

    PubMed  PubMed Central  Google Scholar 

  23. Fernandez-Bueno I, Pastor JCJC, Gayoso MJMJ et al (2008) Müller and macrophage-like cell interactions in an organotypic culture of porcine neuroretina. Mol Vis 14:2148–2156

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Cossenza M, Cadilhe DV, Coutinho RN, Paes-de-Carvalho R (2006) Inhibition of protein synthesis by activation of NMDA receptors in cultured retinal cells: a new mechanism for the regulation of nitric oxide production. J Neurochem 97:1481–1493. https://doi.org/10.1111/j.1471-4159.2006.03843.x

    Article  CAS  PubMed  Google Scholar 

  25. Hartani D, Belguendouz H, Guenane H et al (2006) Effect of nitrites and nitrates on bovine retina in vitro. J Fr Ophtalmol 29:32–36. https://doi.org/10.1016/s0181-5512(06)73744-5

    Article  CAS  PubMed  Google Scholar 

  26. Lahmar-Belguendouz K, Belguendouz H, Hartani D et al (2009) Deleterious effects of stable nitric oxide derivatives, a uveitis inflammatory marker, on cultured bovine ocular layers. J Fr Ophtalmol 32:247–256. https://doi.org/10.1016/j.jfo.2009.01.010

    Article  CAS  PubMed  Google Scholar 

  27. Allamby D, Foreman D, Carrington L et al (1997) Cell attachment to, and contraction of, the retina in vitro. Invest Ophthalmol Vis Sci 38:2064–2072

    CAS  PubMed  Google Scholar 

  28. Koizumi A, Zeck G, Ben Y et al (2007) Organotypic culture of physiologically functional adult mammalian retinas. PLoS One 2:e221. https://doi.org/10.1371/journal.pone.0000221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fernandez-Bueno I, Garcia-Gutierrez MT, Srivastava GK et al (2013) Adalimumab (tumor necrosis factor-blocker) reduces the expression of glial fibrillary acidic protein immunoreactivity increased by exogenous tumor necrosis factor alpha in an organotypic culture of porcine neuroretina. Mol Vis 19:894–903

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Gaub BM, Berry MH, Holt AE et al (2014) Restoration of visual function by expression of a light-gated mammalian ion channel in retinal ganglion cells or ON-bipolar cells. Proc Natl Acad Sci U S A 111:E5574–E5583. https://doi.org/10.1073/pnas.1414162111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Taylor L, Arnér K, Ghosh F (2017) Specific inhibition of TRPV4 enhances retinal ganglion cell survival in adult porcine retinal explants. Exp Eye Res 154:10–21. https://doi.org/10.1016/j.exer.2016.11.002

    Article  CAS  PubMed  Google Scholar 

  32. Syed H, Safa R, Chidlow G, Osborne NN (2006) Sulfisoxazole, an endothelin receptor antagonist, protects retinal neurones from insults of ischemia/reperfusion or lipopolysaccharide. Neurochem Int 48:708–717. https://doi.org/10.1016/j.neuint.2005.12.007

    Article  CAS  PubMed  Google Scholar 

  33. Delyfer M-N, Simonutti M, Neveux N et al (2005) Does GDNF exert its neuroprotective effects on photoreceptors in the rd1 retina through the glial glutamate transporter GLAST? Mol Vis 11:677–687

    CAS  PubMed  Google Scholar 

  34. Franke AG, Gubbe C, Beier M, Duenker N (2006) Transforming growth factor-beta and bone morphogenetic proteins: cooperative players in chick and murine programmed retinal cell death. J Comp Neurol 495:263–278. https://doi.org/10.1002/cne.20869

    Article  CAS  PubMed  Google Scholar 

  35. Lagrèze WA, Pielen A, Steingart R et al (2005) The peptides ADNF-9 and NAP increase survival and neurite outgrowth of rat retinal ganglion cells in vitro. Investig Ophthalmol Vis Sci 46:933–938. https://doi.org/10.1167/iovs.04-0766

    Article  Google Scholar 

  36. García M, Forster V, Hicks D, Vecino E (2002) Effects of müller glia on cell survival and neuritogenesis in adult porcine retina in vitro. Invest Ophthalmol Vis Sci 43:3735–3743

    PubMed  Google Scholar 

  37. Mayazur Rahman S, Reichenbach A, Zink M, Mayr SG (2016) Mechanical spectroscopy of retina explants at the protein level employing nanostructured scaffolds. Soft Matter 12:3431–3441. https://doi.org/10.1039/c6sm00293e

    Article  CAS  PubMed  Google Scholar 

  38. Saikia P, Maisch T, Kobuch K et al (2006) Safety testing of indocyanine green in an ex vivo porcine retina model. Invest Ophthalmol Vis Sci 47:4998–5003. https://doi.org/10.1167/iovs.05-1665

    Article  PubMed  Google Scholar 

  39. Pastor JC, Coco RM, Fernandez-Bueno I et al (2017) Acute retinal damage after using a toxic perfluoro-octane for vitreo-retinal surgery. Retina 37:1140. https://doi.org/10.1097/IAE.0000000000001680

    Article  CAS  PubMed  Google Scholar 

  40. Johnson TV, Martin KR (2008) Development and characterization of an adult retinal explant organotypic tissue culture system as an in vitro intraocular stem cell transplantation model. Invest Ophthalmol Vis Sci 49:3503–3512. https://doi.org/10.1167/iovs.07-1601

    Article  PubMed  Google Scholar 

  41. Rodriguez-Crespo D, Di Lauro S, Singh AKAK et al (2014) Triple-layered mixed co-culture model of RPE cells with neuroretina for evaluating the neuroprotective effects of adipose-MSCs. Cell Tissue Res 358:705–716. https://doi.org/10.1007/s00441-014-1987-5

    Article  CAS  PubMed  Google Scholar 

  42. Mollick T, Mohlin C, Johansson K (2016) Human neural progenitor cells decrease photoreceptor degeneration, normalize opsin distribution and support synapse structure in cultured porcine retina. Brain Res 1646:522–534. https://doi.org/10.1016/J.BRAINRES.2016.06.039

    Article  CAS  PubMed  Google Scholar 

  43. Jones MK, Lu B, Chen DZ et al (2019) In vitro and in vivo proteomic comparison of human neural progenitor cell-induced photoreceptor survival. Proteomics 19:1800213. https://doi.org/10.1002/pmic.201800213

    Article  CAS  Google Scholar 

  44. Niyadurupola N, Sidaway P, Osborne A et al (2011) The development of human organotypic retinal cultures (HORCs) to study retinal neurodegeneration. Br J Ophthalmol 95:720–726. https://doi.org/10.1136/bjo.2010.181404

    Article  PubMed  Google Scholar 

  45. Carter DA, Dick AD (2003) Lipopolysaccharide/interferon-gamma and not transforming growth factor beta inhibits retinal microglial migration from retinal explant. Br J Ophthalmol 87:481–487. https://doi.org/10.1136/bjo.87.4.481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Carter DA, Dick AD (2004) CD200 maintains microglial potential to migrate in adult human retinal explant model. Curr Eye Res 28:427–436. https://doi.org/10.1080/02713680490503778

    Article  CAS  PubMed  Google Scholar 

  47. Balasubramaniam B, Carter DA, Mayer EJ, Dick AD (2009) Microglia derived IL-6 suppresses neurosphere generation from adult human retinal cell suspensions. Exp Eye Res 89:757–766. https://doi.org/10.1016/j.exer.2009.06.019

    Article  CAS  PubMed  Google Scholar 

  48. Busskamp V, Duebel J, Balya D et al (2010) Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa. Science 329:413–417

    Article  CAS  Google Scholar 

  49. Carr AJ, Vugler A, Lawrence J et al (2009) Molecular characterization and functional analysis of phagocytosis by human embryonic stem cell-derived RPE cells using a novel human retinal assay. Mol Vis 15:283–295

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Murali A, Ramlogan-Steel CA, Andrzejewski S et al (2019) Retinal explant culture: a platform to investigate human neuro-retina. Clin Exp Ophthalmol 47:274–285. https://doi.org/10.1111/ceo.13434

    Article  PubMed  Google Scholar 

  51. Johnson TV, DeKorver NW, Levasseur VA et al (2014) Identification of retinal ganglion cell neuroprotection conferred by platelet-derived growth factor through analysis of the mesenchymal stem cell secretome. Brain 137:503–519. https://doi.org/10.1093/brain/awt292

    Article  PubMed  Google Scholar 

  52. Osborne A, Sanderson J, Martin KR (2018) Neuroprotective effects of human mesenchymal stem cells and platelet-derived growth factor on human retinal ganglion cells. Stem Cells 36:65–78. https://doi.org/10.1002/stem.2722

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Fernandez-Bueno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fernandez-Bueno, I., Usategui-Martin, R. (2021). Ex Vivo Model of Spontaneous Neuroretinal Degeneration for Evaluating Stem Cells’ Paracrine Properties. In: Stock, P., Christ, B. (eds) In Vitro Models for Stem Cell Therapy. Methods in Molecular Biology, vol 2269. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1225-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1225-5_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1224-8

  • Online ISBN: 978-1-0716-1225-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics