Skip to main content

Biophysical Studies of the Binding of Viral RNA with the 80S Ribosome Using switchSENSE

  • Protocol
  • First Online:
Protein-Ligand Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2263))

  • 2070 Accesses

Abstract

Translation initiation, in both eukaryotes and bacteria, requires essential elements such as mRNA, ribosome , initiator tRNA, and a set of initiation factors. For each domain of life, canonical mechanisms and signals are observed to initiate protein synthesis. However, other initiation mechanism can be used, especially in viral mRNAs. Some viruses hijack cellular machinery to translate some of their mRNAs through a noncanonical initiation pathway using internal ribosome entry site (IRES), a highly structured RNAs which can directly recruit the ribosome with a restricted set of initiation factors, and in some cases even without cap and initiator tRNA. In this chapter, we describe the use of biosensors relying on electro-switchable nanolevers using the switchSENSE® technology, to investigate kinetics of the intergenic (IGR) IRES of the cricket paralysis virus (CrPV) binding to 80S yeast ribosome . This study provides a proof of concept for the application of this method on large complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Balvay L, Soto Rifo R, Ricci EP et al (2009) Structural and functional diversity of viral IRESes. Biochim Biophys Acta 1789(9-10):542–557. https://doi.org/10.1016/j.bbagrm.2009.07.005

    Article  CAS  PubMed  Google Scholar 

  2. Kieft JS (2008) Viral IRES RNA structures and ribosome interactions. Trends Biochem Sci 33(6):274–283. https://doi.org/10.1016/j.tibs.2008.04.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Thompson SR (2012) Tricks an IRES uses to enslave ribosomes. Trends Microbiol 20(11):558–566. https://doi.org/10.1016/j.tim.2012.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Filbin ME, Kieft JS (2009) Toward a structural understanding of IRES RNA function. Curr Opin Struct Biol 19(3):267–276. https://doi.org/10.1016/j.sbi.2009.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Johnson AG, Grosely R, Petrov AN, Puglisi JD (2017) Dynamics of IRES-mediated translation. Philos Trans R Soc Lond Ser B Biol Sci 372(1716). https://doi.org/10.1098/rstb.2016.0177rstb.2016.0177

  6. Bugaud O, Barbier N, Chommy H et al (2017) Kinetics of CrPV and HCV IRES-mediated eukaryotic translation using single-molecule fluorescence microscopy. RNA 23(11):1626–1635. https://doi.org/10.1261/rna.061523.117rna.061523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Petrov A, Grosely R, Chen J et al (2016) Multiple parallel pathways of translation initiation on the CrPV IRES. Mol Cell 62(1):92–103. https://doi.org/10.1016/j.molcel.2016.03.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Muhs M, Hilal T, Mielke T et al (2015) Cryo-EM of ribosomal 80S complexes with termination factors reveals the translocated cricket paralysis virus IRES. Mol Cell 57(3):422–432. https://doi.org/10.1016/j.molcel.2014.12.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Murray J, Savva CG, Shin BS et al (2016) Structural characterization of ribosome recruitment and translocation by type IV IRES. Elife 5:e13567. https://doi.org/10.7554/eLife.13567

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kerr CH, Ma ZW, Jang CJ et al (2016) Molecular analysis of the factorless internal ribosome entry site in cricket paralysis virus infection. Sci Rep 6:37319. https://doi.org/10.1038/srep37319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pestova TV, Lomakin IB, Hellen CU (2004) Position of the CrPV IRES on the 40S subunit and factor dependence of IRES/80S ribosome assembly. EMBO Rep 5(9):906–913. https://doi.org/10.1038/sj.embor.7400240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Knezevic J, Langer A, Hampel PA et al (2012) Quantitation of affinity, avidity, and binding kinetics of protein analytes with a dynamically switchable biosurface. J Am Chem Soc 134(37):15225–15228. https://doi.org/10.1021/ja3061276

    Article  CAS  PubMed  Google Scholar 

  13. Langer A, Hampel PA, Kaiser W et al (2013) Protein analysis by time-resolved measurements with an electro-switchable DNA chip. Nat Commun 4:2099. https://doi.org/10.1038/ncomms3099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rant U, Pringsheim E, Kaiser W et al (2009) Detection and size analysis of proteins with switchable DNA layers. Nano Lett 9(4):1290–1295. https://doi.org/10.1021/nl8026789

    Article  CAS  PubMed  Google Scholar 

  15. Kroener F, Heerwig A, Kaiser W et al (2017) Electrical actuation of a DNA origami Nanolever on an electrode. J Am Chem Soc 139(46):16510–16513. https://doi.org/10.1021/jacs.7b10862

    Article  CAS  PubMed  Google Scholar 

  16. Clery A, Sohier TJM, Welte T et al (2017) switchSENSE: A new technology to study protein-RNA interactions. Methods 118-119:137–145. https://doi.org/10.1016/j.ymeth.2017.03.004

    Article  CAS  PubMed  Google Scholar 

  17. Ben-Shem A, Garreau de Loubresse N, Melnikov S et al (2011) The structure of the eukaryotic ribosome at 3.0 a resolution. Science 334(6062):1524–1529. https://doi.org/10.1126/science.1212642

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Special thanks to Claire Batisse, who provided the yeast strain for 80S purification. This strain was generously given by Yusupov lab, which was elaborated in the first place by Dinman lab. The authors would like to thank Dynamic Biosensors for the encouraging collaboration. Finally, thank you to Philippe Dumas for his constant support, Yaser Hashem, Stefano Marzi, and Angelita Simonetti for fruitful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Ennifar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Schenckbecher, E., Bec, G., Sakamoto, T., Meyer, B., Ennifar, E. (2021). Biophysical Studies of the Binding of Viral RNA with the 80S Ribosome Using switchSENSE. In: Daviter, T., Johnson, C.M., McLaughlin, S.H., Williams, M.A. (eds) Protein-Ligand Interactions. Methods in Molecular Biology, vol 2263. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1197-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1197-5_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1196-8

  • Online ISBN: 978-1-0716-1197-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics