Skip to main content

Chemical Synthesis of PDZ Domains

  • Protocol
  • First Online:
PDZ Mediated Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2256))

Abstract

Developments in chemical protein synthesis have enabled the generation of tailor-made proteins including incorporation of many types of modifications into proteins, enhancing our ability to control site-specificity of protein posttranslational modifications (PTMs), modify protein backbones and introduce photocrosslinking probes. For PDZ (postsynaptic density protein, disks large, zonula occludens) protein domains, expressed protein ligation (EPL) has been employed to introduce analogs of cognate amino acids, amide-to-ester bond mutations, and phosphorylations in the study of PDZ domain-mediated protein-protein interactions (PPIs). Here, we present protocols for EPL of PDZ domains focusing on phosphorylation and amide-to-ester modifications in the PDZ domain proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Merrifield RB (1963) Solid-phase peptide synthesis. I. The synthesis of a tetrapeptide. J Am Chem Soc 85:2149–2154

    Article  CAS  Google Scholar 

  2. Palomo JM (2014) Solid-phase peptide synthesis: an overview focused on the preparation of biologically relevant peptides. RSC Adv 4:32658–32672

    Article  CAS  Google Scholar 

  3. Behrendt R, White P, Offer J (2016) Advances in Fmoc solid-phase peptide synthesis. J Pept Sci 22:4–27

    Article  CAS  Google Scholar 

  4. Wöhr T, Mutter M (1995) Pseudo-prolines in peptide synthesis: direct insertion of serine and threonine derived oxazolidines in dipeptides. Tetrahedron Lett 36:3847–3848

    Article  Google Scholar 

  5. Spare LK, Laude V, Harman DG, Aldrich-Wright JR, Gordon CP (2018) An optimised approach for continuous-flow solid-phase peptide synthesis utilising a rudimentary flow reactor. React Chem Eng 3:875–882

    Article  CAS  Google Scholar 

  6. Varela Y, Vanegas Murcia M, Patarroyo M (2018) Synthetic evaluation of standard and microwave-assisted solid-phase peptide synthesis of a long chimeric peptide derived from four plasmodium falciparum proteins. Molecules 23:2877

    Article  Google Scholar 

  7. Dawson PE, Kent SB (2000) Synthesis of native proteins by chemical ligation. Annu Rev Biochem 69:923–960

    Article  CAS  Google Scholar 

  8. Conibear AC, Watson EE, Payne RJ, Becker CF (2018) Native chemical ligation in protein synthesis and semi-synthesis. Chem Soc Rev 47:9046–9068

    Article  CAS  Google Scholar 

  9. Johnson EC, Kent SB (2006) Insights into the mechanism and catalysis of the native chemical ligation reaction. J Am Chem Soc 128:6640–6646

    Article  CAS  Google Scholar 

  10. Li J, Li Y, He Q, Li Y, Li H, Liu L (2014) One-pot native chemical ligation of peptide hydrazides enables total synthesis of modified histones. Org Biomol Chem 12:5435–5441

    Article  CAS  Google Scholar 

  11. Thompson RE, Liu X, Alonso-García N, Pereira PJB, Jolliffe KA, Payne RJ (2014) Trifluoroethanethiol: an additive for efficient one-pot peptide ligation- desulfurization chemistry. J Am Chem Soc 136:8161–8164

    Article  CAS  Google Scholar 

  12. Huang YC, Chen CC, Gao S, Wang YH, Xiao H, Wang F, Li YM (2016) Synthesis of l-and d-ubiquitin by one-pot ligation and metal-free desulfurization. Chem Eur J 22:7623–7628

    Article  CAS  Google Scholar 

  13. Ghassemian A, Wang CIA, Yau MK, Reid RC, Lewis RJ, Fairlie DP, Durek T (2013) Efficient chemical synthesis of human complement protein C3a. Chem Commun 49:2356–2358

    Article  CAS  Google Scholar 

  14. Torbeev VY, Kent SB (2007) Convergent chemical synthesis and crystal structure of a 203 amino acid “covalent dimer” HIV-1 protease enzyme molecule. Angew Chem Int Ed 46:1667–1670

    Article  CAS  Google Scholar 

  15. Durek T, Becker CF (2005) Protein semi-synthesis: new proteins for functional and structural studies. J Biomed Eng 22:153–172

    CAS  Google Scholar 

  16. Blanco-Canosa JB, Nardone B, Albericio F, Dawson PE (2015) Chemical protein synthesis using a second-generation N-acylurea linker for the preparation of peptide-thioester precursors. J Am Chem Soc 13:7197–7209

    Article  Google Scholar 

  17. Huang YC, Chen CC, Li SJ, Gao S, Shi J, Li YM (2014) Facile synthesis of C-terminal peptide hydrazide and thioester of NY-ESO-1 (A39-A68) from an Fmoc-hydrazine 2-chlorotrityl chloride resin. Tetrahedron Lett 70:2951–2955

    Article  CAS  Google Scholar 

  18. Muir TW, Sondhi D, Cole PA (1998) Expressed protein ligation: a general method for protein engineering. Proc Natl Acad Sci U S A 95:6705–6710

    Article  CAS  Google Scholar 

  19. Haase C, Rohde H, Seitz O (2008) Native chemical ligation at valine. Angew Chem Int Ed 47:6807–6810

    Article  CAS  Google Scholar 

  20. Sato K, Kitakaze K, Nakamura T, Naruse N, Aihara K, Shigenaga A, Otaka A (2015) The total chemical synthesis of the monoglycosylated GM2 ganglioside activator using a novel cysteine surrogate. Chem Commun 51:9946–9948

    Article  CAS  Google Scholar 

  21. Harpaz Z, Siman P, Kumar KA, Brik A (2010) Protein synthesis assisted by native chemical ligation at leucine. Chembiochem 11:1232–1235

    Article  CAS  Google Scholar 

  22. Han J, Luby-Phelps K, Das B, Shu X, Xia Y, Mosteller RD, Broek D (1998) Role of substrates and products of PI 3-kinase in regulating activation of Rac-related guanosine triphosphatases by Vav. Science 279:558–560

    Article  CAS  Google Scholar 

  23. Wan Q, Danishefsky SJ (2007) Free-radical-based, specific desulfurization of cysteine: a powerful advance in the synthesis of polypeptides and glycopolypeptides. Angew Chem Int Ed 46:9248–9252

    Article  CAS  Google Scholar 

  24. Pedersen SW, Moran GE, Sereikaitė V, Haugaard-Kedström LM, Strømgaard K (2016) Importance of a conserved Lys/Arg residue for ligand/PDZ domain interactions as examined by protein semisynthesis. Chembiochem 17:1936–1944

    Article  CAS  Google Scholar 

  25. Eildal JN, Hultqvist G, Balle T, Stuhr-Hansen N, Padrah S, Gianni S, Jemth P (2013) Probing the role of backbone hydrogen bonds in protein–peptide interactions by amide-to-ester mutations. J Am Chem Soc 135:12998–13007

    Article  CAS  Google Scholar 

  26. Pedersen SW, Albertsen L, Moran GE, Levesque B, Pedersen SB, Bartels L, Strømgaard K (2017) Site-specific phosphorylation of PSD-95 PDZ domains reveals fine-tuned regulation of protein-protein interactions. ACS Chem Biol 12:2313–2323

    Article  CAS  Google Scholar 

  27. Haj-Yahya M, Lashuel HA (2018) Protein semisynthesis provides access to tau disease-associated post-translational modifications (PTMs) and paves the way to deciphering the tau PTM code in health and diseased states. J Am Chem Soc 140:6611–6621

    Article  CAS  Google Scholar 

  28. Chin JW, Cropp TA, Anderson JC, Mukherji M, Zhang Z, Schultz PG (2003) An expanded eukaryotic genetic code. Science 301:964–967

    Article  CAS  Google Scholar 

  29. Eissler S, Kley M, Bächle D, Loidl G, Meier T, Samson D (2017) Substitution determination of Fmoc-substituted resins at different wavelengths. J Pept Sci 23:757–762

    Article  CAS  Google Scholar 

  30. Applied Biosystems (1998) Cleavage, deprotection, and isolation of peptides after Fmoc synthesis. Tech Bull 1–12

    Google Scholar 

  31. Schnölzer M, Alewood P, Jones A, Alewood D, Kent SB (2007) In situ neutralization in Boc-chemistry solid-phase peptide synthesis. Int J Pept Res Ther 13:31–44

    Article  Google Scholar 

  32. Jensen KJ (2013) Solid-phase peptide synthesis: an introduction. Peptide synthesis and applications. Methods Mol Biol 1047:1–21

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristian Strømgaard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kossmann, C., Ma, S., Clemmensen, L.S., Strømgaard, K. (2021). Chemical Synthesis of PDZ Domains. In: Borg, JP. (eds) PDZ Mediated Interactions. Methods in Molecular Biology, vol 2256. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1166-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1166-1_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1165-4

  • Online ISBN: 978-1-0716-1166-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics