Skip to main content

Genome-Scale Perturbation of Long Noncoding RNA Expression Using CRISPR Interference

  • Protocol
Functional Analysis of Long Non-Coding RNAs

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2254))

Abstract

CRISPR-mediated interference (CRISPRi), a robust and specific system for programmably repressing transcription, provides a versatile tool for systematically characterizing the function of long noncoding RNAs (lncRNAs). When used with highly parallel, lentiviral pooled screening approaches, CRISPRi enables the targeted knockdown of tens of thousands of lncRNA-expressing loci in a single screen. Here we describe the use of CRISPRi to target lncRNA loci in a pooled screen, using cell growth and proliferation as an example of a phenotypic readout. Considerations for custom lncRNA-targeting libraries, alternative phenotypic readouts, and orthogonal validation approaches are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guttman M, Donaghey J, Carey BW et al (2011) lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature 477:295–300. https://doi.org/10.1038/nature10398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lin N, Chang K-Y, Li Z et al (2014) An evolutionarily conserved long noncoding RNA TUNA controls pluripotency and neural lineage commitment. Mol Cell 53:1005–1019. https://doi.org/10.1016/j.molcel.2014.01.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhu S, Li W, Liu J et al (2016) Genome-scale deletion screening of human long non-coding RNAs using a paired-guide RNA CRISPR-Cas9 library. Nat Biotechnol 34:1279–1286. https://doi.org/10.1038/nbt.3715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Liu Y, Cao Z, Wang Y et al (2018) Genome-wide screening for functional long noncoding RNAs in human cells by Cas9 targeting of splice sites. Nat Biotechnol 1656:175–1210. https://doi.org/10.1038/nbt.4283

    Article  CAS  Google Scholar 

  5. Liu SJ, Horlbeck MA, Cho SW et al (2017) CRISPRi-based genome-scale identification of functional long noncoding RNA loci in human cells. Science 355:eaah7111. https://doi.org/10.1126/science.aah7111

    Article  CAS  Google Scholar 

  6. Kopp F, Mendell JT (2018) Functional classification and experimental dissection of long noncoding RNAs. Cell 172:393–407. https://doi.org/10.1016/j.cell.2018.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bassett AR, Akhtar A, Barlow DP et al (2014) Considerations when investigating lncRNA function in vivo. eLife 3:e03058. https://doi.org/10.7554/eLife.03058

    Article  PubMed  PubMed Central  Google Scholar 

  8. Liu SJ, Lim DA (2018) Modulating the expression of long non-coding RNAs for functional studies. EMBO Rep 19(12):e46955–11. https://doi.org/10.15252/embr.201846955

    Article  CAS  Google Scholar 

  9. Gilbert LA, Larson MH, Morsut L et al (2013) CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154:442–451. https://doi.org/10.1016/j.cell.2013.06.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Qi LS, Larson MH, Gilbert LA et al (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152:1173–1183. https://doi.org/10.1016/j.cell.2013.02.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gilbert LA, Horlbeck MA, Adamson B et al (2014) Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159:647–661. https://doi.org/10.1016/j.cell.2014.09.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Horlbeck MA, Gilbert LA, Villalta JE et al (2016) Compact and highly active next-generation libraries for CRISPR-mediated gene repression and activation. eLife 5:914. https://doi.org/10.7554/eLife.19760

    Article  CAS  Google Scholar 

  13. Horlbeck MA, Witkowsky LB, Guglielmi B et al (2016) Nucleosomes impede Cas9 access to DNA in vivo and in vitro. eLife 5:2767. https://doi.org/10.7554/eLife.12677

    Article  CAS  Google Scholar 

  14. Radzisheuskaya A, Shlyueva D, Müller I et al (2016) Optimizing sgRNA position markedly improves the efficiency of CRISPR/dCas9-mediated transcriptional repression. Nucleic Acids Res 44:e141–e141. https://doi.org/10.1093/nar/gkw583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mandegar MA, Huebsch N, Frolov EB et al (2016) CRISPR interference efficiently induces specific and reversible gene silencing in human iPSCs. Cell Stem Cell 18:541–553. https://doi.org/10.1016/j.stem.2016.01.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Boettcher M, Tian R, Blau JA et al (2018) Dual gene activation and knockout screen reveals directional dependencies in genetic networks. Nat Biotechnol 36:170–178. https://doi.org/10.1038/nbt.4062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cho SW, Xu J, Sun R et al (2018) Promoter of lncRNA gene PVT1 is a tumor-suppressor DNA boundary element. Cell 173:1398–1412.e22. https://doi.org/10.1016/j.cell.2018.03.068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ho T-T, Zhou N, Huang J (2015) Targeting non-coding RNAs with the CRISPR/Cas9 system in human cell lines. Nucleic Acids Res 43:e17–e17. https://doi.org/10.1093/nar/gku1198

    Article  CAS  PubMed  Google Scholar 

  19. Goyal A, Myacheva K, Gross M et al (2017) Challenges of CRISPR/Cas9 applications for long non-coding RNA genes. Nucleic Acids Res 45:e12. https://doi.org/10.1093/nar/gkw883

    Article  CAS  PubMed  Google Scholar 

  20. Wang T, Birsoy K, Hughes NW et al (2015) Identification and characterization of essential genes in the human genome. Science 350:1096–1101. https://doi.org/10.1126/science.aac7041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Aguirre AJ, Meyers RM, Weir BA et al (2016) Genomic copy number dictates a gene-independent cell response to CRISPR/Cas9 targeting. Cancer Discov 6:914–929. https://doi.org/10.1158/2159-8290.CD-16-0154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Munoz DM, Cassiani PJ, Li L et al (2016) CRISPR screens provide a comprehensive assessment of cancer vulnerabilities but generate false-positive hits for highly amplified genomic regions. Cancer Discov 6:900–913. https://doi.org/10.1158/2159-8290.CD-16-0178

    Article  CAS  PubMed  Google Scholar 

  23. Meng L, Ward AJ, Chun S et al (2015) Towards a therapy for Angelman syndrome by targeting a long non-coding RNA. Nature 518:409–412. https://doi.org/10.1038/nature13975

    Article  CAS  PubMed  Google Scholar 

  24. Yan WX, Chong S, Zhang H et al (2018) Cas13d is a compact RNA-targeting type VI CRISPR effector positively modulated by a WYL-domain-containing accessory protein. Mol Cell 70:327–339.e5. https://doi.org/10.1016/j.molcel.2018.02.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Konermann S, Lotfy P, Brideau NJ et al (2018) Transcriptome engineering with RNA-targeting type VI-D CRISPR effectors. Cell 173:665–676.e14. https://doi.org/10.1016/j.cell.2018.02.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Konermann S, Brigham MD, Trevino AE et al (2015) Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517:583–588. https://doi.org/10.1038/nature14136

    Article  CAS  PubMed  Google Scholar 

  27. Jost M, Chen Y, Gilbert LA, Horlbeck MA et al (2017) Combined CRISPRi/a-based chemical genetic screens reveal that Rigosertib is a microtubule-destabilizing agent. Mol Cell 68:210–223.e6. https://doi.org/10.1016/j.molcel.2017.09.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Horlbeck MA, Xu A, Wang M et al (2018) Mapping the genetic landscape of human cells. Cell 174:953–967.e22. https://doi.org/10.1016/j.cell.2018.06.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel A. Lim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Cite this protocol

Liu, S.J., Horlbeck, M.A., Weissman, J.S., Lim, D.A. (2021). Genome-Scale Perturbation of Long Noncoding RNA Expression Using CRISPR Interference. In: Cao, H. (eds) Functional Analysis of Long Non-Coding RNAs. Methods in Molecular Biology, vol 2254. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1158-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1158-6_20

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1157-9

  • Online ISBN: 978-1-0716-1158-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics