Skip to main content

Tagging Proteins with Fluorescent Reporters Using the CRISPR/Cas9 System and Double-Stranded DNA Donors

  • Protocol
  • First Online:
Multiprotein Complexes

Abstract

Macromolecular complexes govern the majority of biological processes and are of great biomedical relevance as factors that perturb interaction networks underlie a number of diseases, and inhibition of protein–protein interactions is a common strategy in drug discovery. Genome editing technologies enable precise modifications in protein coding genes in mammalian cells, offering the possibility to introduce affinity tags or fluorescent reporters for proteomic or imaging applications in the bona fide cellular context. Here we describe a streamlined procedure which uses the CRISPR/Cas9 system and a double-stranded donor plasmid for efficient generation of homozygous endogenously GFP-tagged human cell lines. Establishing cellular models that preserve native genomic regulation of the target protein is instrumental to investigate protein localization and dynamics using fluorescence imaging but also to affinity purify associated protein complexes using anti-GFP antibodies or nanobodies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Villicana C, Cruz G, Zurita M (2014) The basal transcription machinery as a target for cancer therapy. Cancer Cell Int 14(1):18

    Google Scholar 

  2. Scott DE, Bayly AR, Abell C, Skidmore J (2016) Small molecules, big targets: drug discovery faces the protein-protein interaction challenge. Nat Rev Drug Discov 15(8):533–550

    Google Scholar 

  3. Bushweller JH (2019) Targeting transcription factors in cancer—from undruggable to reality. Nat Rev Cancer 19(11):611–624

    Google Scholar 

  4. Doudna JA, Charpentier E (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346(6213):1258096

    Article  Google Scholar 

  5. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821

    Article  CAS  Google Scholar 

  6. Dalvai M, Loehr J, Jacquet K, Huard CC, Roques C, Herst P, Cote J, Doyon Y (2015) A scalable genome-editing-based approach for mapping multiprotein complexes in human cells. Cell Rep 13(3):621–633

    Article  CAS  Google Scholar 

  7. Dewari PS, Southgate B, McCarten K, Monogarov G, O’Duibhir E, Quinn N, Tyrer A, Leitner MC, Plumb C, Kalantzaki M, Blin C, Finch R, Bressan RB, Morrison G, Jacobi AM, Behlke MA, von Kriegsheim A, Tomlinson S, Krijgsveld J, Pollard SM (2018) An efficient and scalable pipeline for epitope tagging in mammalian stem cells using Cas9 ribonucleoprotein. elife 7

    Google Scholar 

  8. Geny S, Pichard S, Poterszman A, Concordet J (in press) Gene tagging with the CRISPR-Cas9 system to facilitate macromolecular complex purification. Methods Mol Biol

    Google Scholar 

  9. Compe E, Egly JM (2016) Nucleotide excision repair and transcriptional regulation: TFIIH and beyond. Annu Rev Biochem 85:265–290

    Article  CAS  Google Scholar 

  10. Kolesnikova O, Radu L, Poterszman A (2019) TFIIH: a multi-subunit complex at the cross-roads of transcription and DNA repair. Adv Protein Chem Struct Biol 115:21–67

    Article  CAS  Google Scholar 

  11. Sandoz J, Nagy Z, Catez P, Caliskan G, Geny S, Renaud JB, Concordet JP, Poterszman A, Tora L, Egly JM, Le May N, Coin F (2019) Functional interplay between TFIIH and KAT2A regulates higher-order chromatin structure and class II gene expression. Nat Commun 10(1):1288

    Article  Google Scholar 

  12. Yeh CD, Richardson CD, Corn JE (2019) Advances in genome editing through control of DNA repair pathways. Nat Cell Biol 21(12):1468–1478

    Article  CAS  Google Scholar 

  13. Chu VT, Weber T, Wefers B, Wurst W, Sander S, Rajewsky K, Kuhn R (2015) Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat Biotechnol 33(5):543–548

    Article  CAS  Google Scholar 

  14. Sluch VM, Chamling X, Wenger C, Duan Y, Rice DS, Zack DJ (2018) Highly efficient scarless knock-in of reporter genes into human and mouse pluripotent stem cells via transient antibiotic selection. PLoS One 13(11):e0201683

    Article  Google Scholar 

  15. Sentmanat MF, Peters ST, Florian CP, Connelly JP, Pruett-Miller SM (2018) A survey of validation strategies for CRISPR-Cas9 editing. Sci Rep 8(1):888

    Article  Google Scholar 

  16. Vouillot L, Thelie A, Pollet N (2015) Comparison of T7E1 and surveyor mismatch cleavage assays to detect mutations triggered by engineered nucleases. G3 (Bethesda) 5(3):407–415

    Article  Google Scholar 

  17. Renaud JB, Boix C, Charpentier M, De Cian A, Cochennec J, Duvernois-Berthet E, Perrouault L, Tesson L, Edouard J, Thinard R, Cherifi Y, Menoret S, Fontaniere S, de Croze N, Fraichard A, Sohm F, Anegon I, Concordet JP, Giovannangeli C (2016) Improved genome editing efficiency and flexibility using modified oligonucleotides with TALEN and CRISPR-Cas9 nucleases. Cell Rep 14(9):2263–2272

    Article  CAS  Google Scholar 

  18. Shan Q, Wang Y, Li J, Gao C (2014) Genome editing in rice and wheat using the CRISPR/Cas system. Nat Protoc 9(10):2395–2410

    Article  CAS  Google Scholar 

  19. Kim HJ, Lee HJ, Kim H, Cho SW, Kim JS (2009) Targeted genome editing in human cells with zinc finger nucleases constructed via modular assembly. Genome Res 19(7):1279–1288

    Article  CAS  Google Scholar 

  20. Guschin DY, Waite AJ, Katibah GE, Miller JC, Holmes MC, Rebar EJ (2010) A rapid and general assay for monitoring endogenous gene modification. Methods Mol Biol 649:247–256

    Article  CAS  Google Scholar 

  21. Brinkman EK, Chen T, Amendola M, van Steensel B (2014) Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res 42(22):e168

    Article  Google Scholar 

  22. Paix A, Rasoloson D, Folkmann A, Seydoux G (2019) Rapid tagging of human proteins with fluorescent reporters by genome engineering using double-stranded DNA donors. Curr Protoc Mol Biol 129(1):e102

    Article  CAS  Google Scholar 

  23. Paix A, Schmidt H, Seydoux G (2016) Cas9-assisted recombineering in C. elegans: genome editing using in vivo assembly of linear DNAs. Nucleic Acids Res 44(15):e128

    PubMed  PubMed Central  Google Scholar 

  24. Auer TO, Del Bene F (2014) CRISPR/Cas9 and TALEN-mediated knock-in approaches in zebrafish. Methods 69(2):142–150

    Article  CAS  Google Scholar 

  25. Liu Z, Chen O, Wall JBJ, Zheng M, Zhou Y, Wang L, Ruth Vaseghi H, Qian L, Liu J (2017) Systematic comparison of 2A peptides for cloning multi-genes in a polycistronic vector. Sci Rep 7(1):2193

    Article  CAS  Google Scholar 

  26. Chen X, Zaro JL, Shen WC (2013) Fusion protein linkers: property, design and functionality. Adv Drug Deliv Rev 65(10):1357–1369

    Article  CAS  Google Scholar 

  27. Koch B, Nijmeijer B, Kueblbeck M, Cai Y, Walther N, Ellenberg J (2018) Generation and validation of homozygous fluorescent knock-in cells using CRISPR-Cas9 genome editing. Nat Protoc 13(6):1465–1487

    Article  CAS  Google Scholar 

  28. Kimple ME, Brill AL, Pasker RL (2013) Overview of affinity tags for protein purification. Curr Protoc Protein Sci 73:19–23

    Article  Google Scholar 

  29. Rossolillo P, Kolesnikova O, Essabri K, Ramon Zamorano G, Poterszman A (in press) Production of multiprotein complexes using the Baculovirus expression system: homology based and Restriction Free cloning strategies for construct design. Methods Mol Biol

    Google Scholar 

  30. Anders C, Niewoehner O, Duerst A, Jinek M (2014) Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513(7519):569–573

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank IGBMC cell culture and imaging facilities for assistance and fruitful discussions. This work was supported by the Centre National pour la Recherche Scientifique (CNRS), the Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Strasbourg (UdS), Association pour la Recherche sur le Cancer (ARC), the Ligue nationale contre le cancer, Institut National du Cancer (INCa; INCA 9378), Agence National pour la Recherche (ANR-12-BSV8-0015-01 and ANR-10-LABX-0030-INRT under the program Investissements d’Avenir ANR-10-IDEX-0002-02), Instruct (R&D Project Funding), and Instruct-ULTRA as part of the European Union’s Horizon 2020 (Grant ID 731005) by Instruct-ERIC.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jean-Paul Concordet or Arnaud Poterszman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Geny, S. et al. (2021). Tagging Proteins with Fluorescent Reporters Using the CRISPR/Cas9 System and Double-Stranded DNA Donors. In: Poterszman, A. (eds) Multiprotein Complexes. Methods in Molecular Biology, vol 2247. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1126-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1126-5_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1125-8

  • Online ISBN: 978-1-0716-1126-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics