Skip to main content

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2246))

Abstract

Foodborne diseases are a major global public health concern. The gold standard detection techniques, namely culture plating techniques, are nowadays considered inadequate for the modern food industry mainly due to the time requirements of this sector. As such, the adoption of faster detection methods to be routinely used in screening the protocols of foodborne pathogens is required. Fluorescence in situ Hybridization (FISH) methods have been described as a valid alternative to standard plating techniques and are compatible with the requirements of the food industry.

Here, we give an overview of the methodological aspects to consider regarding sample preparation and sample analysis for pathogen detection in food matrices by FISH methodologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yeni F, Acar S, Polat ÖG et al (2014) Rapid and standardized methods for detection of foodborne pathogens and mycotoxins on fresh produce. Food Control 40:359–367. https://doi.org/10.1080/10408398.2013.777021

    Article  CAS  Google Scholar 

  2. Rohde A, Hammerl JA, Appel B et al (2015) FISHing for bacteria in food - a promising tool for the reliable detection of pathogenic bacteria? Food Microbiol 46:395–407. https://doi.org/10.1016/j.fm.2014.09.002

    Article  CAS  PubMed  Google Scholar 

  3. Mangal M, Bansal S, Sharma SK et al (2016) Molecular detection of foodborne pathogens: a rapid and accurate answer to food safety. Crit Rev Food Sci Nutr 56:1568–1584. https://doi.org/10.1080/10408398.2013.782483

    Article  CAS  PubMed  Google Scholar 

  4. WHO (2015) WHO estimates of the global burden of foodborne diseases: foodborne disease burden epidemiology reference group 2007–2015. WHO Publishing, Geneva

    Google Scholar 

  5. Barlow SM, Boobis AR, Bridges J et al (2015) The role of hazard- and risk-based approaches in ensuring food safety. Trends Food Sci Technol 46:176–188. https://doi.org/10.1016/j.tifs.2015.10.007

    Article  CAS  Google Scholar 

  6. Hoorfar J (2011) Rapid detection, characterization, and enumeration of foodborne pathogens. APMIS Suppl 133(119):1–24. https://doi.org/10.1111/j.1600-0463.2011.02767.x

    Article  CAS  Google Scholar 

  7. Law JW, Mutalib NA, Chan K et al (2015) Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantages and limitations. Front Microbiol 5:770. https://doi.org/10.3389/fmicb.2014.00770

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wang Y, Salazar JK (2016) Culture-independent rapid detection methods for bacterial pathogens and toxins in food matrices. Compr Rev Food Sci Food Saf 15:183–205. https://doi.org/10.1111/1541-4337.12175

    Article  CAS  PubMed  Google Scholar 

  9. Zhao X, Lin C, Wang J et al (2014) Advances in rapid detection methods for foodborne pathogens. J Microbiol Biotechnol 24:297–312. https://doi.org/10.4014/jmb.1310.10013

    Article  CAS  PubMed  Google Scholar 

  10. López-Campos G, Martínez-Suárez JV, Aguado-Urda M et al (2012) Detection, identification, and analysis of foodborne pathogens. In: López-Campos G, Martínez-Suárez JV, Aguado-Urda M et al (eds) Microarray detection and characterization of bacterial foodborne pathogens. Springer US, New York

    Chapter  Google Scholar 

  11. Moter A, Göbel UB (2000) Fluorescence in situ hybridization (FISH) for direct visualization of microorganisms. J Microbiol Methods 41:85–112. https://doi.org/10.1016/S0167-7012(00)00152-4

    Article  CAS  PubMed  Google Scholar 

  12. DeLong EF, Wickham GS, Pace NR (1989) Phylogenetic stains: ribosomal RNA-based probes for the identification of single cells. Science 243:1360–1363. https://doi.org/10.1126/science.2466341

    Article  CAS  PubMed  Google Scholar 

  13. Cerqueira L, Azevedo NF, Almeida C et al (2008) DNA mimics for the rapid identification of microorganisms by fluorescence in situ hybridization (FISH). Int J Mol Sci 9:1944–1960. https://doi.org/10.3390/ijms9101944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Commission Regulation (EC) No. 2073/2005 of 15 November 2005 on microbiological criteria for foodstuffs. Available from: http://eur-lex.europa.eu/eli/reg/2005/2073/oj. Accessed 01 Jan 2018

  15. Fang Q, Brockmann S, Botzenhart K et al (2003) Improved detection of Salmonella spp. in foods by fluorescent in situ hybridization with 23S rRNA probes: a comparison with conventional culture methods. J Food Prot 66:723–731. https://doi.org/10.4315/0362-028X-66.5.723

    Article  CAS  PubMed  Google Scholar 

  16. Fuchizawa I, Shimizu S, Ootsubo M et al (2009) Specific and rapid quantification of viable Listeria monocytogenes using fluorescence in situ hybridization in combination with filter cultivation. Microbes Environ 24:273–275. https://doi.org/10.1264/jsme2.ME09102

  17. Moreno Y, Hernández M, Ferrús MA et al (2001) Direct detection of thermotolerant campylobacters in chicken products by PCR and in situ hybridization. Res Microbiol 152:577–582. https://doi.org/10.1016/S0923-2508(01)01232-3

    Article  CAS  PubMed  Google Scholar 

  18. Almeida C, Azevedo NF, Iversen C et al (2009) Development and application of a novel peptide nucleic acid probe for the specific detection of Cronobacter genomospecies (Enterobacter sakazakii) in powdered infant formula. Appl Environ Microbiol 75:2925–2930. https://doi.org/10.1128/AEM.02470-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bisha B, Brehm-Stecher BF (2009) Simple adhesive-tape-based sampling of tomato surfaces combined with rapid fluorescence in situ hybridization for Salmonella detection. Appl Environ Microbiol 75:1450–1455. https://doi.org/10.1128/AEM.01944-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bisha B, Brehm-Stecher BF (2010) Combination of adhesive-tape-based sampling and fluorescence in situ hybridization for rapid detection of Salmonella on fresh produce. J Vis Exp 44:2308. https://doi.org/10.3791/2308

    Article  CAS  Google Scholar 

  21. Sousa J, Rocha R, Cerqueira L et al (2019) Validation of biomode S.A. Probe4Cronobacter™ for the identification of Cronobacter spp. J AOAC Int 102:855–864

    Article  CAS  PubMed  Google Scholar 

  22. Almeida C, Sousa JM, Rocha R et al (2013) Detection of Escherichia coli O157 by peptide nucleic acid fluorescence in situ hybridization (PNA-FISH) and comparison to a standard culture method. Appl Environ Microbiol 79:6293–6300. https://doi.org/10.1128/AEM.01009-13

  23. Gunasekera T, Dorsch M, Slade M et al (2003) Specific detection of Pseudomonas spp. in milk by fluorescence in situ hybridization using ribosomal RNA directed probes. J Appl Microbiol 94:936–945. https://doi.org/10.1046/j.1365-2672.2003.01930.x

    Article  CAS  PubMed  Google Scholar 

  24. Yamaguchi N, Kitaguchi A, Nasu M (2012) Selective enumeration of viable Enterobacteriaceae and Pseudomonas spp. in milk within 7h by multicolor fluorescence in situ hybridization following microcolony formation. J Biosci Bioeng 113:746–750. https://doi.org/10.1016/j.jbiosc.2012.01.009

    Article  CAS  PubMed  Google Scholar 

  25. Rocha R, Sousa JM, Cerqueira L et al (2019) Development and application of peptide nucleic acid fluorescence in situ hybridization for the specific detection of Listeria monocytogenes. Food Microbiol 80:1–8. https://doi.org/10.1016/j.fm.2018.12.009

  26. Stevens KA, Jaykus L (2004) Bacterial separation and concentration from complex sample matrices: a review. Crit Rev Microbiol 30:7–24. https://doi.org/10.1080/10408410490266410

    Article  PubMed  Google Scholar 

  27. Morrison LE, Ramakrishnan R, Ruffalo TM, Wilber KA (2003) Labeling fluorescence in situ hybridization probes for genomic targets. In: Yao-Shan (ed) Molecular cytogenetics: protocols and applications. Humana Press, Totowa, NJ

    Google Scholar 

  28. Bouvier T, Del Giorgio P (2003) Factors influencing the detection of bacterial cells using fluorescence in situ hybridization (FISH): a quantitative review of published reports. FEMS Microbiol Ecol 44:3–15. https://doi.org/10.1016/S0168-6496(02)00461-0

    Article  CAS  PubMed  Google Scholar 

  29. Yilmaz LŞ, Okten HE, Noguera DR (2006) Making all parts of the 16S rRNA of Escherichia coli accessible in situ to single DNA oligonucleotides. Appl Environ Microbiol 72:733–744. https://doi.org/10.1128/AEM.72.1.733-744.2006

  30. Yilmaz LŞ, Noguera DR (2004) Mechanistic approach to the problem of hybridization efficiency in fluorescent in situ hybridization. Appl Environ Microbiol 70:7126–7139. https://doi.org/10.1128/AEM.70.12.7126-7139.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was financially supported by: (1) Base Funding - UIDB/00511/2020 of the Laboratory for Process Engineering, Environment, Biotechnology and Energy—LEPABE—funded by the national funds through FCT/MCTES (PIDDAC); (2) Projects POCI-01-0145-FEDER-031011 (μFISH) and POCI-01-0145-FEDER-029961 (ColorISH), funded by the FEDER funds through COMPETE2020—Programa Operacional Competitividade e Internacionalização (POCI) and by national funds (PIDDAC) through FCT/MCTES; and (3) BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020 - Programa Operacional Regional do Norte.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Rocha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rocha, R., Almeida, C., Azevedo, N.F. (2021). FISH in Food Samples. In: Azevedo, N.F., Almeida, C. (eds) Fluorescence In-Situ Hybridization (FISH) for Microbial Cells. Methods in Molecular Biology, vol 2246. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1115-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1115-9_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1114-2

  • Online ISBN: 978-1-0716-1115-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics