Skip to main content

Peptide Nucleic Acid (PNA) Clamps to Reduce Co-amplification of Plant DNA During PCR Amplification of 16S rRNA Genes from Endophytic Bacteria

  • Protocol
  • First Online:
The Plant Microbiome

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2232))

Abstract

High-throughput sequencing of universal bacterial 16S rRNA gene (16S rDNA) amplicons is a routine method for characterizing bacterial diversity in a range of environments. For eukaryotic host-associated communities, however, plastid and mitochondrial genes are often co-amplified with, and greatly outnumber, bacterial 16S rDNA. This makes it difficult to obtain sufficient numbers of target 16S rDNA sequences to characterize the diversity of endophytic bacterial communities. This chapter describes a method that improves the amplification of bacterial 16S rDNA from plant tissues by using a peptide nucleic acid (PNA) PCR clamp. The PNA clamp selectively binds to a targeted region of the plant genome and inhibits its amplification during PCR. PNA clamps are especially useful for characterizing bacterial communities on plant tissues with lower levels of microbial colonization such as the root tips and leaves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Donn S, Kirkegaard JA, Perera G et al (2015) Evolution of bacterial communities in the wheat crop rhizosphere. Environ Microbiol 17:610–621. https://doi.org/10.1111/1462-2920.12452

    Article  PubMed  Google Scholar 

  2. Kawasaki A, Donn S, Ryan PR et al (2016) Microbiome and exudates of the root and rhizosphere of Brachypodium distachyon, a model for wheat. PLoS One 11:e0164533. https://doi.org/10.1371/journal.pone.0164533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rho H, Hsieh M, Kandel SL et al (2018) Do endophytes promote growth of host plants under stress? A meta-analysis on plant stress mitigation by endophytes. Microbial Ecol 75:407–418. https://doi.org/10.1007/s00248-017-1054-3

    Article  Google Scholar 

  4. Rastogi G, Tech JJ, Coaker GL et al (2010) A PCR-based toolbox for the culture-independent quantification of total bacterial abundances in plant environments. J Microbiol Methods 83:127–132. https://doi.org/10.1016/j.mimet.2010.08.006

    Article  CAS  PubMed  Google Scholar 

  5. Klindworth A, Pruesse E, Schweer T et al (2013) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 41:e1. https://doi.org/10.1093/nar/gks808

    Article  CAS  PubMed  Google Scholar 

  6. Chelius MK, Triplett EW (2001) The diversity of archaea and bacteria in association with the roots of Zea mays L. Microbial Ecol 41:252–263. https://doi.org/10.1007/s002480000087

    Article  CAS  Google Scholar 

  7. Hanshew AS, Mason CJ, Raffa KF et al (2013) Minimization of chloroplast contamination in 16S rRNA gene pyrosequencing of insect herbivore bacterial communities. J Microbiol Methods 95:149–155. https://doi.org/10.1016/j.mimet.2013.08.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lundberg DS, Yourstone S, Mieczkowski P et al (2013) Practical innovations for high-throughput amplicon sequencing. Nat Methods 10:999–1002. https://doi.org/10.1038/nmeth.2634

    Article  CAS  PubMed  Google Scholar 

  9. Sakai M, Ikenaga M (2013) Application of peptide nucleic acid (PNA)-PCR clamping technique to investigate the community structures of rhizobacteria associated with plant roots. J Microbiol Methods 92:281–288. https://doi.org/10.1016/j.mimet.2012.09.036

    Article  CAS  PubMed  Google Scholar 

  10. Nielsen PE, Egholm M (1999) An introduction to peptide nucleic acid. Curr Issues Mol Biol 1:89–104. https://doi.org/10.21775/cimb.001.089

    Article  CAS  PubMed  Google Scholar 

  11. Ørum H, Nielsen PE, Egholm M et al (1993) Single base pair mutation analysis by PNA directed PCR clamping. Nucleic Acids Res 21:5332–5336. https://doi.org/10.1093/nar/21.23.5332

    Article  PubMed  PubMed Central  Google Scholar 

  12. Beckers B, De Beeck MO, Thijs S et al (2016) Performance of 16s rDNA primer pairs in the study of rhizosphere and endosphere bacterial microbiomes in metabarcoding studies. Front Microbiol 7. https://doi.org/10.3389/fmicb.2016.00650

  13. Cole JR, Wang Q, Fish JA et al (2014) Ribosomal database project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 42:D633–D642. https://doi.org/10.1093/nar/gkt1244

    Article  CAS  PubMed  Google Scholar 

  14. Terahara T, Chow S, Kurogi H et al (2011) Efficiency of peptide nucleic acid-directed PCR clamping and its application in the investigation of natural diets of the Japanese eel leptocephali. PLoS One 6:e25715. https://doi.org/10.1371/journal.pone.0025715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kawasaki A, Okada S, Zhang C et al (2018) A sterile hydroponic system for characterising root exudates from specific root types and whole-root systems of large crop plants. Plant Methods 14:114. https://doi.org/10.1186/s13007-018-0380-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

A.K. is funded by CSIRO OCE Postdoctoral Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter R. Ryan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kawasaki, A., Ryan, P.R. (2021). Peptide Nucleic Acid (PNA) Clamps to Reduce Co-amplification of Plant DNA During PCR Amplification of 16S rRNA Genes from Endophytic Bacteria. In: Carvalhais, L.C., Dennis, P.G. (eds) The Plant Microbiome. Methods in Molecular Biology, vol 2232. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1040-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1040-4_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1039-8

  • Online ISBN: 978-1-0716-1040-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics