Skip to main content

Shared-Control Robots

  • Protocol
  • First Online:
Book cover Neurosurgical Robotics

Part of the book series: Neuromethods ((NM,volume 162))

Abstract

This chapter reviews shared-control robots, a class of robotic device in which the surgeon and the robot simultaneously manipulate the surgical tool together. The shared-control approach seeks to exploit the superior aspects of humans and machines, to enable more precise interventions while ensuring the human surgeon retains executive control. Much of the technology discussed in this chapter is emerging research and many of the described systems have been developed for generic microsurgical interventions. Nonetheless, the broad concepts behind these surgical systems are highly applicable to neurosurgery and particularly to microsurgical procedures. We start by presenting an exemplar of a grounded, shared-control robot: the Steady-Hand system. We then review a series of handheld smart surgical devices, including Micron, a handheld tremor cancellation device. This chapter also presents handheld devices capable of augmenting haptic feedback to surgeons performing delicate neurosurgical tasks, image-guided handheld devices with embedded robotic actuation, and a new generation of handheld microscopic imaging devices for visualizing tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marcus HJ, Zareinia K, Gan LS et al (2014) Forces exerted during microneurosurgery: a cadaver study. Int J Med Robot Comput Assist Surg 10:251–256

    Article  Google Scholar 

  2. Gan LS, Zareinia K, Lama S et al (2015) Quantification of forces during a neurosurgical procedure: a pilot study. World Neurosurg 84:537–548

    Article  PubMed  Google Scholar 

  3. Zareinia K, Maddahi Y, Gan LS et al (2016) A force-sensing bipolar forceps to quantify tool-tissue interaction forces in microsurgery. IEEE/ASME Trans Mechatron 21:2365–2377

    Article  Google Scholar 

  4. Kwoh YS, Hou J, Jonckheere EA et al (1988) A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery. IEEE Trans Biomed Eng 35:153–160

    Article  CAS  PubMed  Google Scholar 

  5. Yang GZ, Cambias J, Cleary K et al (2017) Medical robotics-regulatory, ethical, and legal considerations for increasing levels of autonomy. Sci Robot 2:2–4

    Google Scholar 

  6. Marcus H, Nandi D, Darzi A et al (2013) Surgical robotics through a keyhole: from today’s translational barriers to tomorrow’s “disappearing” robots. IEEE Trans Biomed Eng 60:674–681

    Article  PubMed  Google Scholar 

  7. Jakopec M, Harris SJ, Rodriguez y Baena F et al (2002) Preliminary results of an early clinical experience with the Acrobot™ system for total knee replacement surgery. In: Medical image computing and computer-assisted intervention (MICCAI). Springer, London, pp 256–263

    Google Scholar 

  8. Taylor R, Jensen P, Whitcomb L et al (1999) A steady-hand robotic system for microsurgical augmentation. Int J Robot Res 18:1201–1210

    Article  Google Scholar 

  9. Kapoor A, Kumar R, Taylor RH (2003) Simple biomanipulation tasks with “steady hand” cooperative manipulator. In: Medical image computing and computer-assisted intervention (MICCAI), pp 141–148

    Google Scholar 

  10. Payne CJ, Yang GZ (2014) Hand-held medical robots. Ann Biomed Eng 42:1594–1605

    Article  PubMed  Google Scholar 

  11. Elble RJ, Koller WC (1990) The physiology of normal tremor. In: Tremor. The Johns Hopkins University Press, Baltimore, MD

    Google Scholar 

  12. MacLachlan RA, Becker BC, Cuevas Tabares J et al (2012) Micron: an actively stabilized handheld tool for microsurgery. IEEE Trans Robot 28:195–212

    Article  PubMed  Google Scholar 

  13. Latt WT, Tan U, Shee CY, et al (2009) A compact hand-held active physiological tremor compensation instrument. IEEE/ASME Int Conf Adv Intell Mechatronics 711–716

    Google Scholar 

  14. Saxena A, Patel R V. (2013) An active handheld device for compensation of physiological tremor using an ionic polymer metallic composite actuator. IEEE Int Conf Intell Robot Syst 4275–4280

    Google Scholar 

  15. Chang D, Gu GM, Kim J (2013) Design of a novel tremor suppression device using a linear delta manipulator for micromanipulation. IEEE/RSJ Int Conf Intell Robot Syst 413–418

    Google Scholar 

  16. Song C, Gehlbach PL, Kang JU (2012) Active tremor cancellation by a “Smart” handheld vitreoretinal microsurgical tool using swept source optical coherence tomography. Opt Express 20:3315–3317

    Google Scholar 

  17. Riviere CN, Ang WT, Khosla PK (2003) Toward active tremor canceling in handheld microsurgical instruments. IEEE Trans Robot Autom 19:793–800

    Article  Google Scholar 

  18. Yang S, MacLachlan RA, Riviere CN (2015) Manipulator design and operation of a six-degree-of-freedom handheld tremor-canceling microsurgical instrument. IEEE/ASME Trans Mechatron 20:761–772

    Article  Google Scholar 

  19. MacLachlan RA, Riviere CN (2008) High-speed microscale optical tracking using digital fequency-domain multiplexing. IEEE Trans Instrum Meas 58(6):1991–2001

    Google Scholar 

  20. Yang S, Martel JN, Lobes LA et al (2018) Techniques for robot-aided intraocular surgery using monocular vision. Int J Robot Res 37:931–952

    Article  Google Scholar 

  21. Becker BC, Voros S, MacLachlan RA, et al (2009) Active guidance of a handheld micromanipulator using visual servoing. IEEE Int Conf Robot Autom 339–344

    Google Scholar 

  22. Becker BC, MacLachlan RA, Hager GD et al (2011) Handheld micromanipulation with vision-based virtual fixtures. IEEE Int Conf Robot Autom 4127–4132

    Google Scholar 

  23. Becker BC, Voros S, Lobes LA et al (2010) Retinal vessel cannulation with an image-guided handheld robot. IEEE Eng Med Biol Soc Conf 5420–5423

    Google Scholar 

  24. Becker BC, MacLachlan RA, Lobes LA et al (2010) Semiautomated intraocular laser surgery using handheld instruments. Lasers Surg Med 42:264–273

    Article  PubMed  PubMed Central  Google Scholar 

  25. Yang S, Lobes LA, Martel JN et al (2015) Hand-held automated microsurgical instrumentation for intraocular laser surgery. Lasers Surg Med 47:658–668

    Article  PubMed  PubMed Central  Google Scholar 

  26. Stetten G, Wu B, Klatzky R, et al (2011) Hand-held force magnifier for surgical instruments. In: Medical image computing and computer-assisted intervention (MICCAI), pp 90–100

    Google Scholar 

  27. Lee R, Wu B, Klatzky R et al (2013) Hand-held force magnifier for surgical instruments: evolution toward a clinical device. Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) 7815:77–89

    Google Scholar 

  28. Payne CJ, Latt WT, Yang G (2012) A new hand-held force-amplifying device for micromanipulation. IEEE Int Conf Robot Autom 2012:1583–1588

    Google Scholar 

  29. Payne CJ (2015) Ungrounded haptic-feedback for hand-held surgical robots. https://core.ac.uk/download/pdf/77003165.pdf

  30. Payne CJ, Marcus HJ, Yang GZ (2015) A smart haptic hand-held device for neurosurgical microdissection. Ann Biomed Eng 43:2185–2195

    Article  PubMed  Google Scholar 

  31. Marcus HJ, Payne CJ, Kailaya-Vasa A et al (2016) A “Smart” force-limiting instrument for microsurgery: laboratory and in vivo validation. PLoS One 11:1–9

    Google Scholar 

  32. Payne CJ, Rafii-Tari H, Marcus HJ et al (2014) Hand-held microsurgical forceps with force-feedback for micromanipulation. Proc IEEE Int Conf Robot Autom 284–289

    Google Scholar 

  33. Watanabe T, Koyama T, Yoneyama T et al (2017) A force-visualized silicone retractor attachable to surgical suction pipes. Sensors 17:1–18

    Article  Google Scholar 

  34. Kane G, Eggers G, Boesecke R, et al (2009) System design of a hand-held mobile robot for craniotomy. In: Medical image computing and computer-assisted intervention (MICCAI), pp 402–409

    Google Scholar 

  35. Moccia S, Foti S, Routray A et al (2018) Toward improving safety in neurosurgery with an active handheld instrument. Ann Biomed Eng 46:1450–1464

    Article  PubMed  PubMed Central  Google Scholar 

  36. Gras G, Marcus HJ, Payne CJ, et al (2015) Visual force feedback for hand-held microsurgical instruments. In: MICCAI, pp 480–487

    Google Scholar 

  37. Payne CJ, Kwok K, Yang G (2014) An ungrounded hand-held surgical device incorporating active constraints with force-feedback. In: IEEE/RSJ International Conference on Intelligent robots and systems (IROS), pp 2559–2565

    Google Scholar 

  38. Jabbour JM, Saldua MA, Bixler JN et al (2012) Confocal endomicroscopy: instrumentation and medical applications. Ann Biomed Eng 40:378–397

    Article  PubMed  Google Scholar 

  39. Sankar T, Delaney PM, Ryan RW et al (2010) Miniaturized handheld confocal microscopy for neurosurgery: results in an experimental glioblastoma model. Neurosurgery 66:410–418

    Article  PubMed  Google Scholar 

  40. Foersch S, Heimann A, Ayyad A et al (2012) Confocal laser endomicroscopy for diagnosis and histomorphologic imaging of brain tumors in vivo. PLoS One 7:e41760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Eschbacher J, Martirosyan NL, Nakaji P et al (2012) In vivo intraoperative confocal microscopy for real-time histopathological imaging of brain tumors. J Neurosurg 116:854–860

    Article  PubMed  Google Scholar 

  42. Zehri AH, Ramey W, Georges JF et al (2014) Neurosurgical confocal endomicroscopy: a review of contrast agents, confocal systems, and future imaging modalities. Surg Neurol Int 5:60

    Article  PubMed  PubMed Central  Google Scholar 

  43. Latt WT, Newton RC, Visentini-Scarzanella M et al (2011) A hand-held instrument to maintain steady tissue contact during probe-based confocal laser endomicroscopy. IEEE Trans Biomed Eng 58:2694–2703

    Article  PubMed  Google Scholar 

  44. Giataganas P, Hughes M, Payne CJ et al (2019) Intraoperative robotic-assisted large-area high-speed microscopic imaging and intervention. IEEE Trans Biomed Eng 66:208–216

    Article  PubMed  Google Scholar 

  45. Hughes M, Yang G-Z (2016) Line-scanning fiber bundle endomicroscopy with a virtual detector slit. Biomed Opt Express 7:2257

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wisanuvej P, Giataganas P, Leibrandt K et al (2017) Three-dimensional robotic-assisted endomicroscopy with a force adaptive robotic arm. In: IEEE International Conference on Robotics and automation (ICRA). IEEE, New York, pp 2379–2384

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Payne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Payne, C.J., Vyas, K., Bautista-Salinas, D., Zhang, D., Marcus, H.J., Yang, GZ. (2021). Shared-Control Robots. In: Marcus, H.J., Payne, C.J. (eds) Neurosurgical Robotics. Neuromethods, vol 162. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0993-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0993-4_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0992-7

  • Online ISBN: 978-1-0716-0993-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics