Skip to main content

In Vivo Vascular Network Forming Assay

  • Protocol
  • First Online:
Book cover Vascular Morphogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2206))

Abstract

The capability of forming functional blood vessel networks is critical for the characterization of endothelial cells. In this chapter, we will review a modified in vivo vascular network forming assay by replacing traditional mouse tumor-derived Matrigel with a well-defined collagen–fibrin hydrogel. The assay is reliable and does not require special equipment, surgical procedure, or a skilled person to perform. Moreover, investigators can modify this method on-demand for testing different cell sources, perturbation of gene functions, growth factors, and pharmaceutical molecules, and for the development and investigation of strategies to enhance neovascularization of engineered human tissues and organs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kastana P, Zahra FT, Ntenekou D et al (2019) Matrigel plug assay for in vivo evaluation of angiogenesis. Methods Mol Biol 1952:219–232

    Article  CAS  Google Scholar 

  2. Benton G, Arnaoutova I, George J et al (2014) Matrigel: from discovery and ECM mimicry to assays and models for cancer research. Adv Drug Deliv Rev 79-80:3–18

    Article  CAS  Google Scholar 

  3. Melero-Martin JM, Khan ZA, Picard A et al (2007) In vivo vasculogenic potential of human blood-derived endothelial progenitor cells. Blood 109:4761–4768

    Article  CAS  Google Scholar 

  4. Melero-Martin JM, Bischoff J (2008) Chapter 13. An in vivo experimental model for postnatal vasculogenesis. Methods Enzymol 445:303–329

    Article  CAS  Google Scholar 

  5. Melero-Martin JM, De Obaldia ME, Kang SY et al (2008) Engineering robust and functional vascular networks in vivo with human adult and cord blood-derived progenitor cells. Circ Res 103:194–202

    Article  CAS  Google Scholar 

  6. Traktuev DO, Prater DN, Merfeld-Clauss S et al (2009) Robust functional vascular network formation in vivo by cooperation of adipose progenitor and endothelial cells. Circ Res 104:1410–1420

    Article  CAS  Google Scholar 

  7. Au P, Daheron LM, Duda DG et al (2008) Differential in vivo potential of endothelial progenitor cells from human umbilical cord blood and adult peripheral blood to form functional long-lasting vessels. Blood 111:1302–1305

    Article  CAS  Google Scholar 

  8. Risau W, Flamme I (1995) Vasculogenesis. Annu Rev Cell Dev Biol 11:73–91

    Article  CAS  Google Scholar 

  9. Lin RZ, Moreno-Luna R, Munoz-Hernandez R et al (2013) Human white adipose tissue vasculature contains endothelial colony-forming cells with robust in vivo vasculogenic potential. Angiogenesis 16:735–744

    Article  CAS  Google Scholar 

  10. Wang ZZ, Au P, Chen T et al (2007) Endothelial cells derived from human embryonic stem cells form durable blood vessels in vivo. Nat Biotechnol 25:317–318

    Article  CAS  Google Scholar 

  11. Neumeyer J, Lin RZ, Wang K et al (2019) Bioengineering hemophilia A-specific microvascular grafts for delivery of full-length factor VIII into the bloodstream. Blood Adv 3:4166–4176

    Article  Google Scholar 

  12. Wang K, Lin RZ, Melero-Martin JM (2019) Bioengineering human vascular networks: trends and directions in endothelial and perivascular cell sources. Cell Mol Life Sci 76:421–439

    Article  CAS  Google Scholar 

  13. Costa-Almeida R, Gomez-Lazaro M, Ramalho C et al (2015) Fibroblast-endothelial partners for vascularization strategies in tissue engineering. Tissue Eng Part A 21:1055–1065

    Article  CAS  Google Scholar 

  14. Lin RZ, Melero-Martin JM (2012) Fibroblast growth factor-2 facilitates rapid anastomosis formation between bioengineered human vascular networks and living vasculature. Methods 56:440–451

    Article  CAS  Google Scholar 

  15. Chen YC, Lin RZ, Qi H et al (2012) Functional human vascular network generated in photocrosslinkable gelatin methacrylate hydrogels. Adv Funct Mater 22:2027–2039

    Article  CAS  Google Scholar 

  16. Lin RZ, Chen YC, Moreno-Luna R et al (2013) Transdermal regulation of vascular network bioengineering using a photopolymerizable methacrylated gelatin hydrogel. Biomaterials 34:6785–6796

    Article  CAS  Google Scholar 

  17. Lin RZ, Moreno-Luna R, Li D et al (2014) Human endothelial colony-forming cells serve as trophic mediators for mesenchymal stem cell engraftment via paracrine signaling. Proc Natl Acad Sci U S A 111:10137–10142

    Article  CAS  Google Scholar 

  18. Allen P, Melero-Martin J, Bischoff J (2011) Type I collagen, fibrin and PuraMatrix matrices provide permissive environments for human endothelial and mesenchymal progenitor cells to form neovascular networks. J Tissue Eng Regen Med 5:e74–e86

    Article  CAS  Google Scholar 

  19. Lin RZ, Melero-Martin JM (2011) Bioengineering human microvascular networks in immunodeficient mice. J Vis Exp:e3065

    Google Scholar 

  20. Greenberger S, Boscolo E, Adini I et al (2010) Corticosteroid suppression of VEGF-A in infantile hemangioma-derived stem cells. N Engl J Med 362:1005–1013

    Article  CAS  Google Scholar 

  21. Greenberger S, Yuan S, Walsh LA et al (2011) Rapamycin suppresses self-renewal and vasculogenic potential of stem cells isolated from infantile hemangioma. J Invest Dermatol 131:2467–2476

    Article  CAS  Google Scholar 

  22. Boscolo E, Limaye N, Huang L et al (2015) Rapamycin improves TIE2-mutated venous malformation in murine model and human subjects. J Clin Invest 125:3491–3504

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health grants R01AR069038 and R01HL128452 to J. M.-M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan M. Melero-Martin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kim, H.D., Lin, RZ., Melero-Martin, J.M. (2021). In Vivo Vascular Network Forming Assay. In: Ribatti, D. (eds) Vascular Morphogenesis. Methods in Molecular Biology, vol 2206. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0916-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0916-3_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0915-6

  • Online ISBN: 978-1-0716-0916-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics